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PREFACE

Volukae 2 of this report describes the work CSDL has done to investigate
spacecraft Zontrol theory. Each of the six sections devoted to ACOSS reports
on a different aspect of that work.

Section 4, "Compensated Truncation of Modal Models f0r-Desigfi of Control
Systems"' describes the selection process necessary in large space, structure
(LSS) control-system design using a truncated finite-element model. The trun-
cated model must be selected properly and compensated explicitly for control
and observation spillover, so the control system designed through this method
c&n perform satisfactorily when implemented on the structure. Proper seled-
tion requires correct classification of structural modes in"n •"•Drimary" and
"secondary" modes. Explicit compensation for truncation includes; placement

of actuators and sensors, synthesis of the actuator and sensor influences once
they are placed on the structure, and filtering of the actuator inputs and
sensor outputj.

Section 5, "Ensuring Full-Order Cloeed-Loop Stability in the Reduced-
Order Design of Output Feedback Controllers," builds on the studies performed
during ACOSS 6 that established various conditions necessary to ensure full-
order closed-loop asymptotic stability and robustness with reduced-order de-
sign of velocity and displacement output feedback controllers. Currently, the
work in this area concentrates on how to apply qtch resultsi to large flexible
space structures and how to develop a reduced-order design technique thiat will
ensure full-order closed-loop asymptotic stability.

The study includes preliminary development of computer-aided design
software and acceleration output feedback control.

Section 6, "Design Freedom and the Implementation of Suboptimal Output
Feedback Control," discusses the freedom inherent idi design. The section
states that often this freedom is sacrificed purposely when simplifying as-
sumptions are made to avoid theoretical or computational difficulties. Since
it is difficult to consider this topic without referring to specific applica-
tions, the section uses controller design as an example where work is being
done to discover and exploit the freedom of choice in design. Then, the sec-
tion uses suboptimal output feedback control as a case study which is relevant
to ACOSS development.

Section 7, "Stochastic Output Feedback Compensators for Distributed
Parameter Structural Models," presents recent prog~ess on the stochastic
output feedback design problem for distributed parameter plants. The results
presented are an extension of work done under the previous contract.

The concepts developed are general enough to apply to a wide variety of
fixed-form conpeneator design problems, and current studies are aimed at
specializing the results to the. optimal output feedback compensator design
problem. The procedure developed will be applied to the design of velocity
feedback controllers for a vibrating string. The results of this simplc test

vi



should provide insight into the impact of various modeling assumptions on the
convergence of the design procedure described.

Section 8, "Large-Angle Spacecraft Slewing 'Maueuvers," further -develops
work that was reported in the previous ACOSS contract. Specifically, the sec-
tion presents techniques for improving the optimal torque profiles by allowing
the solution process to determine the optimal terminal boundary conditions and
by developing L control-rate penalty technique for producing smooth control
profiles. Several example maneuvers are provided to demonstrate the practical
application and utility of the techniques presented.

Section 9, "O::der Reduction by Identification--Some -Analytical Re-
sults," attempts to characterize conLeol designs that will guarantee stability
using ý reduced-order model. This kind of design compromise is practiced
regularly, but no one has verified the validity of such an approach.

The least squares (LS) me'hod is used in this analysis because it is a
relatively robust identification scheme and analytical expressions for order
reduction already exist for it. The results of the analysis show that a re-
duced order controller can be built using the LS method of identification. It
is planned t6 demonstrate the practicality of this approach on Draper Model /2
in the near future.

vii



SECTION 4

CO!9ENSA¶[ZD TRUNCAION OF MODAL MODELS
FOR DESIGN OF CONTROL SYSTEMS

4.1 Introduction

Finite-element models of a large space structure are too large for the
design of its control Pystams, let alone implementation of "modem",control
systems in space. The model must be truncated substantially to reduce it to
a reasonably low order. A proper truncation requires proper structural-mode
classifications according to their influences on required performance and sen-
sor outputs and their responses to probable dieturbances and actuator inputs.
The truncated modal models must explicitly, be compensated for their truncation
to prevent or reduce control spillover and observation spillover.

4.2 Reduced-Order Modeling for Control-System Designs by Modal Truncation

In practice, not all structural modes that are "molded" by a large
finite-element model are to be calculated because of the increasing computa-
tional expense and inaccuracy. Yet, the number of modes commonly calculated
(using NASTRAN, for example) are very large for a typical large flexible space
structure. Only a very limited number of these calculated modes can be used
to form a reduced-order model required for destgn uf the structure's control
systems, however. Some ideas for appropriate reduced--order modeling are being
formulated here at CSDL. The following (here and Section 4.3) is a preliminary
sketch.

Among the calculated modes, some are to be classified as "primary modes'
and some as "secondary modes". Those modo• that will influence the specified
performance of the structure significantly (e.g., the line-of-sight error and
defocus) and/or will be influenced significantly by probable disturbances on
the structure (e.g., initial disturbances due to maneuvers, sinusoidal or ran-
dom disturbances caused by on-board equipments) are classified as primary modes.
Some primary modes are regarded as critical if a certain critical level is
exceeded. With respect to a configuration of actuators and sensors placed on
the structure, secondary modes are those nonprimary modes which either can be
influenced significantly by the actuation or can influence the sensing signifi-
cantly. Useful ranking techniques are being formulated and studied.

Naturally, those calculated modes which will not only be influenced sig-
nificantly by the probable disturbances but also influence the specified per-
formance significantly should be "modeled" (i.e., retained in the reduced-order
model) for design of control systems. If possible, all other primary modes
should be modeled as well. On the other hand, it is obvious intuitively that
any calculated mode, be it primary or secondary, also should be modeled for de-
sign of control systems if it can be influenced strongly by the actuation or if
it can influence the sensing strongly. A recent research into the linear-
quadratic regulator design technique for application to large space structures
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has indicated that if strongly influential or strong3y influenced secondary
modes are not modeled, spillover can become a very serious problem. To sum
up, some or all primary modes and certain secondary modes are to be modeled
for design of control systems; all other modes are to beneglected.

4.3 Compensation for Truncation

Any reduced-order model carefully derived as such is still a coarse
approximation of its original full-order model. The truncation must be ad-
justed and compensated first so that the closed loop performance of the result-
ing reduced-order mcdel (with the control sysr is thus designed)' can closely
represent the closed-loop performance of the ill-order model (with the same

control systems). In principle, actuators on the structure should be configured
so that influences on modeled primary modes are much stronger than on any other
calculated modes and that the number of secondary modes is reduced to a minimum.
Similarly, sensors also should be configured so that influences by modeled pri-
mary modes are much stronger than by any other calculated modes and that the
number of secondary modes is reduced further. The first step in compensating
for truncation is to adjust the configuration of the actuators and sensors
properly, since an initial intuitive configuration generally is not proper with
respect to such specific modeling requirements. It is ideal if'control spill-
over and observation spillover cait be prevented by proper placement of a proper
number of actuators and sensors. The "placement step" in the three-step spill-
over reduction technique, which resulted from the ACOSS-4 study [4-1], can be
used to generate insights of ideal locations and directions for actuators and
sensors.

B'-Lause of practical constraints on the number, type, location, and
direction of the actuators and sensors allowed on the structure, spillover may
not be prevented completely. Assume that actuators and sensors have been
placed on the structure and that the modeled modes for control design have been
determined. Then, the second step in the compensation is synthesizing the in-
fluences of those actuators and sensors properly so that spillover concerning
a judicious selection of secondary modes is prevented. The "synthesis step" of
the aforemeationed three-step technique is applicable. While ideas and methods
for selecting such secondary modes are to be formulated, a preliminary develop-
ment of the synthesis techniques has begun [4-2] and is being completed (see
Section 4.4).

The third step in the compensation is to filter the actuator inputs and
the sensor outputs so that control spillover and observation spillover of othet
unmodeled modes are reduced appropriately. Low-pass or band-stop filters ar6
to be provided for proper attentuation of unwanted, spill-causing frequency
components in the inputs and outputs, as was considered as the "filtering step"
of the three-step spillover reduction technique. It is logical that control
systems should be designed with these filters c,)nsidered as integral parts of
the reduced-order model, as was suggested earlier [4-1]. On the other hand, it
also sounds reasonable intuitively that 2osterior attachment of low-pass filters
to a control system which is designed using only the unfiltered reduced-order
model could improve the full-order closed-loop performance of the control system.
This common intuition is being examined (see Section 4.5).

2
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4.4 A Completion .of the Symthesis

Preventing control and observation spillover by ising synthesizers has
been discussed in References 4-I and 4-2. A completion of the synthesi4 pro-
cess is discussed in this 'sectitn.

Once an adequate set of secondary modes has been determined to prevent
spillover, the synthesizer, r, can be computed from Reference 4-2, Eq. (5-15).

r = Q2 (4-1)

where the synthesizer r is-m x m', Q2 is m x (m - p) and r is (m - p) x m'.

Here m is the number of (physical) actuators, m' is the number of columns
chosen for r and represents the number of synthetic actuators, and p is the

rank of the control influence matrix ¢s B of such secondary modes.
S F

The elements of matrix r are free parameters. The number m' of synthe-
tic actuators can be arbitrary, but, without being redundant, m - p can be con-
sidered an upper limit. To exercise the complete synthesis process, m' is

chosen to be unity. So r is a vector of free parameters. Consider choosing
so that the synthesized primary control influences take on some desirable values
(see Reference 4-2, Eq. (5-16)). Of course, Reference 4-2, Eq. (5-8) will al-

ways hold no matter what the choice for F is. Here F will be chosen to make the
elements of the synthesized primary control influence vector all l's, if possi-
ble. The relevant equation (Reference 4-2, Eq. (5-16)) is

4BF - v (4-2)

where the primary control influence matrix TBF is p x m, p being the number of

primary modes, and V2 is p x (m - p). Note, however, that p is usually very much

greater than m - p, so in general one cannot solve Eq. (4-2) for F such that

&,.s on the desired values exactly.

Consider using a linear least squares technique ýor finding r so that thke

error I( BFF)desired - V2Y1l is minimized. An Internatiou.tl Mathematical and

Statistical Libraries (IMSL) linear least-squares subroutine is used to determine

a minimizing F. A synthesizer r is then obtained using Eq. (4-1).

The complete synthesis approach to spillover prevention has been applied
to Models 1 and 2. The results of post-multiplying the entire control influ-
ence matrix (secondary, primary, as well as tertiary parts) of both models are
presented in the foliowing.

"3



Figure 4-1 illustrates the results for the example considered in Sec-
tion 5.5.4 of Reference 4-2. Recall that the desired values for the elements
of the synthesized primary control influence vector are all l's. Here Modes 1
and 2 yielded poor synthesized control influence, while Modes 4 and 5 synthe-
sized quite well. Interestingly, Modes I and 2 also Isve becn shown to have a
poor "modal degree of controllability". The synthesized tertiary influences
were clearly not of the order of the secondary control influences (as was de-
sired), but all were less than 1.4. These are indications of either poor
placement of actuators or poor selection of secondary modes for spillover pre-
vention.

0.277SS575615628910-16
0 .1665334536937.35D015 E1ZBF r
o0. 416 333634.23443370J-26,

-0.2137778780,81'j60-15
0.1633203111612015D400

-0.80051869547706330-01 4 1BFr
0 .1121691'.0683267DfO1 P PF
0.09727293911733600.00)
0.331562165572025Z4000
0.13839262005184040D 01 ' T
0.61S59670788395010400 (ois'
0.274918333650!013D#001

Figure 4-1. Synthesized control influence
matrix for Model 1.

This same synthesizer, r, was used to post multiply the control influ-
ence matrix of the perturbed Model i. The result is shown by Figure 4-2, where

Sdenotes the mode-shape matrix of the perturbed model. Some reduction was
achieved in the secondary influences though the reduction was not uniform or
adequate. The problem with poor placement or poor selection was compounded by
parameter variation.

0.355006693n-04i
o0.584S94.3500-02 SF

09954.36'$400-01 4 SF
0. 10i15495560#D00

-0.6450019590-01 _TBF
0.1092923090.01
0.7012117100400
0.636934502N000 )
0.:11236800D01 O j BF r0.5854929900#00
0.2230995040+00

Figure 4-2. Synthesized cortrol influence
matri: for perturbed Mode., 1.

This same synthesis process was also applied to Model 2 where the 78 x 19
elastic control influence matrix was to be synthesized. The synthesizer was
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computed from the results of the second .synthesizer example in Reference 4-2,

Section 5.5.2. The synthesized control i-fluence matrix for Model 2 is shown

in Figure 4-3. Notice that again some of the primary modes yielded synthesized
values close t6 I while others did not. A number of the tertiary modes synthe-

sized to small values as was desired. Note that the secondary modes chosen for

spillover prevention were originally selected based only on knowledge of the

44 lowest frequency elastic modes and that the selection was based on a high
"model degree of controllability". In the synthesized secondary partition, the

third mode (mode nine) was several orders of magnitude above the other secondary

modes. This is because mode nine corresponds to the row where the potential

pivots were too small to eliminate in the secondary partition of the control in-

fluence matrix (see Reference 4-2, Figure 5-3).

-0.56883344605809790-16 0.6987917946233904D-05
0.18859400328853810-16 0.8Z8Z5SZ1097Z45640-O4
0.50487650986766380-06 0.8441S802961035580-O5
0.SS511151231257830-16 -0.Z1549715789466Z1I-13

-0.t0S56473190325160-15 0.10320388668420850-02
0.14040418133687280-15 -0.18353990618351SO-13
0.902OS62075079397D-16 -0.61577062S42269140-14
6.77195194680967920-16 T 0.3195898816432510D-0O
0.10581813203458520-l5 4BFr 0.15886816432S5717D-03
0.470463Z7472871980-17 0.9951V63631709592D-I4
O.2564138137928Z180-16 -0.140H405051371660t01

-0.3177008826914067D-17 -0.408438528464101000
0.67654215563095*80-16 -0.6629593=239941W0,00
0.22741114098103050-17 0.956804938628661500M

-0.49385408956714730-16 -0.9265Z865443553160-03
-0.6267041S65Z019710-18 -0.84569965213267440$00

0.13030754860560160-16 -0,1426770230401454000
-0.3183143652208772 .00
-0.4951991917024904DD00

0.181S4617373606430#00
-0.10373808703545270+01
-0.45270326178271640#00 o4BFr

0.43549688530672810+00
0.965007S4593004900+00
0,2759120573393413D-01

-0.66365441463864340-04 -0.3958912021Z95860D*00
-0.9165053947941367B-04 0.93318100729178S39)00

0.88146065284821370-04 -0.46660381025905000400
0.1713422116121'800-01 0.74877197056352230-13
0.21425075226766790-03 0.20569142386744490-05

-0.11176832998884860-02 -0.11896964606033670401
0.1081579439235Z760-03 -0.740933016306520#+00
0.14056O6203359517DO0 0.25202550940456640-14
0.39009583433409310-03 4BFr -0.43536tS008418666D-05

-O.28481079319020960-0 B 0.2854200163279595n401
0.55984982965946 06D-01 -0.90594557045505440+01
0.74661138570800980-01 0.*31893033967380*02
0.10613944472106150+01 0.7530437084818297D+01
0.1276357075743S780+01 -0.t7639688971E24770401

-0.22809256464196020400 -0.2859104092137920401
O,32O23639482M45+•O0 -O.94127130271.942650401
0.66156169496378750+00 0.210744osO9278980O402

0.12537135442541590-01
0.23405268262630910401

Figure 4-3. Synthesized control influence matrix for
Model 2.

5



4.5 Filters.for Spillover Reduction

The reduction of dpillover by filtering the actuator inputs and sensor
outputs -ppropriately wts originally discussed in [4-1]. The general effects
of the filters on the transient and stcady-state responses have been investi-
gated and are reported briefly here. Some preliminary results on posterior
addition of filters to Model I are discussed also.

One may consider using a filter to reduce control spillover. Then one
is concerned with the effect of the filter on steady-state response and transient
response with a general sinusoidal input to a very lightly damped system. Two
simple filters are being examined: first- and second-order low-pass filters of
the following kind

G (s) - (4-3)
c ts+1

G c(s) = 2 2 (4-4)
s +ds+c

The time response (magnitude and phase angle) of a mode to an input
where filtering is included has been determined. The symbol manipulation
language, MACSYMA, was useful for some of this work. The input-frequency-
dependent effect of the filters on the steady-state responses is as well known.
On the other hand, the filters reduce the magnitude and phase angle of the
transient response of each mode uniformly for all input frequencies. The re-
duction, of course, varies with the natural frequency of the mode.

The common intuition of posterior attachment of low-pass filters to

vibration controllers was studied as a means of reducing control spillover to

high-frequency modes using Model 1. A modal dashpot design of velocity output
feedback controllers (based on critical Modes 1, 2, 4, and 5) was considered be-
cause of its commonly recognized robustness in closed-loop stability [4-2],
[4-3]. CSDL found that adding a second-order low-pass filter, with its natural
frequency lying between Modes 5 and 6, would destabilize the 12-mode closed-
loop system; intuitively such a filter was reasonable for reducing control spill-
over to Modes 6 and beyond. It was found also that adding a filter with a much
higher natural frequency (e.g., between Modes 8 and 9) would not cause closed-
loop stability.

Specifically, the damping ratio to be achieved for the primary modes
with this output feedback controller is 0.1. Two cases are considered. In
the first case, the feedback gain matrix i&

Gv = -(pBF)# (2Zp Qp) (CvP)P # (4-5)
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and the control u is

u - GvY (4-6)

The six actuators and the six sensors are colocated, respectively. In the second
case, tbh six (physical) actuators are combined into four synthetic actuators so
that all spillover is prevented to modes three and six. The syntbesizer r, "hich
is (6 x 4), is chosen so that the synthesized primary-mode control influence

•Tpr
4'T B r'
P F

is the identity matrix. The six (physical) sensors are also synthesized in the
same way but "dualized". So, for the four pairs of synthetic actuators and
synthetic sensors, the feedback gain simply becomes

Gv M -2Z p Ip (4-7)

The intuitively positive effects of filtering both actuator inputs and sensor
outputs (toward reducing closed-loop spillover and thus allowing the damping
ratio to be achieved by the primary modes) will be demonstrated in a later
report.

For now, the potentially negative effects of filter insertion on system
stability is investigated. (Low-pass filters also could represent the dynamics
of the actuators.) The first-order filter above was considered for these values
of T: 0.05, 0.222, 0.25, 0.2, 1.0, and 10. The system remained stable for this
range of T in both cases, and the closed-loo2 poles of the 12-mode model (plus
filters) moved toward the jo axis as 7 increased. The stability of the system
was not preserved when the. second-order filter was inserted, Two values of c
were chosen (c = 4 and c = 6), and d was chosen to make the filter critically
damped. When c was 4, the closed-loop system became unstable in both cases.
With c - 6, however, the system remained stable in both cases.

4.6 Conclusion

Truncated modal models of a large space structure need to be selected
properly and compensated explicitly for control spillover and observation
spillover, so that the control systems thereby designed can perform satis-
factorily when implemented on the structure. Proper selection requires proper
classification of structural modes into "primary" and "secondary" modes. Ex-
piicit compensation for truncation includes

7



(1) Proper placement of actuators and sensors.

(2) Proper synthesis of the influences of the actuators and the
sensors once they are placed on the structure,

(3) Proper filtering of the actuator inputs and sensor outputs.

Direct applications of state-of-the-art design techniques will then become
possible, and the resulting designs more effective in closed-loop performance.
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SECTION 5

ENSURING FULL-ORDER CLOSED-LOOP STABILITY IN THE
REDUCED-ORDER DESIGN OF OUTPUT FEEDBACK CONTRIOLLERS

5.1 Introduction

As a result of ACOSS-6 studies, CSDL has eic-blished various conditions
for ensuring full-order closed-loop asymptotic stability and robustness with
reduced-order design of velocity and displacement output feedback controllers;
for details, see [5-1] Section 3. The emphasis of the current studies is to
apply such results to large flexible space structures and .develop a reduced-
order design technique that will ensure full-order closed-loop asymptotic
stability.

The study includes a preliminary development of computer-aided design
software. Acceleration output feedback control is included in this develop-
ment also. The full-ora.r closed-loop asymptotic stability conditions are
therefore extended to cover the reduced-order design of acceleration output
feedback controllers.

Some important theoretical or technical issues that need to be ad-
dressed in depth in later work are discussed briefly at the end of this
section.

5.2 Problem Formulation

Consider the following finite-element representation of large space
structures

Mq + D; + Kq = f (5-1)

where vector q denotes the L generalized coordinates, vector f the L genera-
lized forces; matrices M, D, and K denote the mass (or inertia), the damping,
and the stiffness, respectively. As usual, M is real, symmetric, and positive
definite, while both D and K are real, symmetric, and nonnegative definite.
Let there be m force kor torque) actuators for control of structural m',tions

f - BFU (5-2)

where vector u denotes the m actuator inputs, one for each actuator, and L x m
matrix B F denotes the actuator influence coefficients. Also let there be IA

acceleration sensors, Z V velocity sensors, and XD displacement sensors for

measurement of structural motions

SYA - CAq

YD { CDq (5-3)
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where vector YA denotes the £A acceleration-sensor outptis, vector YV the I

velocity-sensor outputs, and yD the ID displacement-sensoioutputs; the IA x

L matrix C A' the XV x L matrlx-CV, and the D x L matrix CD denote the influence

coefficients of the acceleration, velocity, and displacement sensors, respec-

tively.

-Now, consider the following form of output feedback control

IuA -GAYA

uV , -GvyV

uD ' -'yGD (5-4)

where the m x iA matrix GA, the m x kV matrix GV, and ,he m x ID matrixkGD

denote the feedback gains.

Partitioning the actuator-influence matrix appropriately yields the
following expression of tbe control force applied to the structureuA~

Bu = [BA BV BD] [ =u] BAUA I BvUV I 'DD (5-5)

Substituting Eq. (5-2) through (5-4) in Eq. (5-1) yields the following expression

for the closed-loop system

(H + BAGACA)q + (D + BvGvCv) ) + (K + BDGDCD)q = 0 (5-6)

It follows that this output-feedback control results in an alteration of the
mass, damping, and stiffness properties of the structure. The feedback gains
GA, GV, and GD can be designed using any technique for satisfying any speci-

fied performance requirements, but the asymptotic stability of the resulting
closed-loop system must be ensured, particularly for large precision space
structures.

A commo practical condition for asymptotic stability is that the aug-
mented mass matrix (M + BAGACA), the augmented damping matrix (D + BvGvCv),

and the augmented stiffness matrix (K + BDflDCD) "a all positive definite.

Symmetry of both t.. mass matrix (H + BA.GAC) and the stiffness matrix (K +

BDGDCD) are always assumed in the literature. Such positive-definite condi-

tions are not satisfied easily for large space structures since, matrix products
BAGACA, BvGvCv, and BDGDCD practically can never be made positive definite.

Moreover, the design of control systems for large space structures commonly is
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based on, not the whole model, Eq. (5-1), but a truncated version. Thus,
full-order closed-loop asymptotic stability is even more difficult to ensure
without any special efforts in the reduced-order design.

Expressed in modal coordinates, the full-order model, Eq. (5-1) and
(5-3), become

+iTf +(5-7)

$'YA - CA4n

YV = C V (

YD = CD n (5-8)

where

4?n = q (5-9)

PTMO = 1 (5-10)

ITDW = A (5-11)

4TK =0 (5-12)

To enable the design of a control system, this modal model is commonly truncated
to reduce its order. Let the undamped natural modes retained be denoted by

subscipt M Then, the design of feedback guins GA, GV, and GD is based only

on the following reduced-order model

n + + EMn P Tf (5-13)
~M M M M H M

YA = C A MnM

YV = CAVMnM

YD = CDM Mn 
(5-14)

The problem ic to ensure that the resulting full-order closed-loop sys-

tem, given by Eq. (5-6) or equivalently by Eq. (5-2), (5-4), (5-5), and (5-8)

combined with Eq. (5-7), is asymptotically stable while the feedback gains GA,

Gv, and GD are being designed using a reduced-order model such as given by

Eq. (5-13) and (5-14). For comments on the underlying difficulties in ensuring

full-order closed-loop asymptotic stability with reduced-order design of velo-

city and displacement output feedback control, see Reference 5-1, Section 3.

Those comments also apply to reduced-order design of acceleration output feed-

back control.
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5.3 Full-Order Closed-Loop Asymptotic Stability.Conditions

The stability conditions previously established for reduced-order de-
sign of velocity and displacement output feedback can easily be extended to
cover the design of acceleration output feedback. Let the modeled modes
contain those that can influence the specified performance (say,,line-of-sight
accuracy) of the structure and/or the sensor outputs significantly and those
that can be influenced significantly by disturbance on the structure and/or
the actuator inputs. Assume without loss of generality that all rigid modes
are modeled modes and that all unmodeled modes are elastic modes, each of
which has some positive amount of inherent damping. Following the same
development as [5-1I] Section 3.3, the following conditions can be stated.

The full-order closed-loop system given by Eq. (5-6) is asymptotically
stable if the following three conditions are all satisfied.

(1) The acceleration output feedback gain GA ensures that the product

BAGACA is both symmetric and nonnegative definite.

T
(2) The velocity output feedback gain GV ensures that A + BV G v CvM

is positive definite and Bv G vC is nonnegative definite.

(3) The displacement output feedback gain GD ensures that

E + 0TB GDCD¢ is positive definite and BDGDCD is both sym-

metric and nonnegative definite.

A few remarks are necessary. Condition (1) ensures both the symmetry
and the positive definiteness of the augmented mass matrix (M + BAGACA).

Condition (2) ensures the positive definiteness of the augmented damping matrix
(D + BvGV C v). Condition (3) ensures both the sy=metry and the positive de-
finiteness of the augmented stiffness matrix (K + BDGDCD).

5.4 Principle of the Reduced-Order Design Technique

Condition (3) takes on the most general form and is the strongest among
the three conditions. The discussions on the design technique will focus on
ensuring Condition (3) in the reduced-order design of displacement output feed-
back control. Thus, the following reduced-order design technique also can be
used or adapted for reduced-order design of velocity and acceleration output
feedback control.

Step 1: Let E bz a nonnegative definite matrix such that

is a positive definite matrix representing desirable closed-loop stiff-

ness of the modeled modes, and set
r *

0 TDGDCDCH (5-16)
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S ~T
This ensures that ZM + 'BD G DC DM is positive definite and B DGDCD

is nonnegaVive definite.

Step 2: Let the feedback gain C be determined as a product of~three

matrices:

GD LARSD (5-17)

To ensure the symmetry of BDGDCD' set

BDLD = (%CD)T (5-18)

and restrict EM to be a symmetric matrix.

Step 3: Solve for LD, SD9 and R from the following matrix equations

[BD C T~ (5-19)
BD I

4)MBT DSRDC 4 M E (5-20)

5.5 Discussions

Matrix Eq. (5-19) can be rewritten as

AX 0 (5-21)

with A representing the known part

[-D D cT]

and X the unknown part

It is now of the same form as the one in the synthesis of actuator influences
for prevention of control spillover. The analytical expression of the gen-
eral closed-form solution already has been given in Eq. (2-30) and (2-31) of

Reference 5-2, Section 2, and that expression can be used directly. A pre-
liminary computer program, similar to that used in the synthesis of actuator
influences, has been coded in PL/I; a Gaussian elimination method is used.

13



Similarly, Eq. (5-20) can be rewritten as,

AXB = C (5-22)

with A, B, and C representing the known parts (%BDL), (RDCTM), and Z

respectively while X represents the unknown part SD. Note that LD andR

become known if Eq. (5-19) is solved first. The analytical expression of
the general closed-form solution recently reported in Reference 5-1, Sec-
tion 3.7.5 can also be used directly. A preliminary computer program using
a Gaussian elimination method has also been coded.

A preliminary combination of these two programs to execute Step 3 of
the design technique has been completed and debugged with M*dŽl No. 1. To
further develop this design technique, several theoretical or technical issues
need to be addressed in depth. The general solution for Eq. (5-19) contains
a matrix of fiae parameters. A first issue to be addressed is how to handle
such free parameters: Is it useful at all to retain the free parameters in
matrices L and RD? What are the tradeoffs if the free parameters are passed

over to matrix S D?

Both Eq. (5-19) and (5-20) require performing column and row operations
on the known matrices. A second issue is the impact of different operation
selections on the feedback gains.

At the end of Step 3, Condition(3) is ensured, but the solution SD2

and hence the feedback gain GD, is in general a function of free parameters in

the general solution of Eq. (5-20). The use of a general solution (instead of
a pseudoinverse solution) is advantageous because it preserves the available
free parameters. A third issue is how to use these free parameters to satisfy
specified performance after the appropriate stability conditions have been
exisured.

The design technique presented in this section does not require collo-

cation of actuators with sensors or the symmetry of feedback gain matrix GD,

unlike common practice. Positive definiteness of gain GD is not required
either.

When this reduced-order design technique and the appropriate computer-
aided design software are developed satisfactorily with respect to Model No. i,
CSDL will demonstrate their application to the much more complex Model No. 2.
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SECTION 6

DESIGN FREEDOM AND THE IMPLEMENTATION
OF SUBOPTIMAL OUTPUT FEEDBACK CONTROL

6.1 Introduction

The principal focus in this section is on the notion of recognizing,
characterizing, and exploiting to advantage the freedom of choice inherently
available in design. Although the specifics discussed relate to the design of
feedback controllers for linear multivariable systems, such a notion clearly
has much wider applicabiity. It is unfortunate that potential freedom in the
design process sometimes remains unrecognized, much like treasure hidden in a
field waizing to be discovered. More often, perhaps, such freedom is pur-
posely sacrificed by making simplifying assumptions to avo!.d aeriug with
certain theoretical or computational difficulties that appe.,r unpleasant and
seemingly insurmountable. However, when sufficient motivation exists, the
effort expended in facing the difficulties squarely often provides insight
that leads to a much deeper understanding of the design problem a-id which
reveals a wider class of possible solutions [6-1]. Such motivatica cert&l07
exists in designing active feedbacK controllers for vibration suppresio .aL
large flexible space structures when the ptecision required -.n pointint and
tracKing with the structure exceeds the present capability. Performane.
improvements associated with tapping previously unexploited eesign freedoo
could be significant.

The potential for design freedom often arises in connection with singu-
larities that are allowed to remain in the mathematical model of the system
being studied. Hence, it is difficult to make ideas on this matter precise
apart from specific applications. In Section 6.2, a number of specific recent
attempts to discover and exploit the freedom of choice in controller design
are discussed to bring out some important general ideas. Special attention is
then given, in Section 6.3, to a particular design approach (suboptimal output
feedback control [6-2]) that has relevance in large flexible structure appli-
cations which has been enhanced significantly by exposing previously hidden
potential for design freedom. The current status of efforts to exploit this
freedom to advantage is described.

6.2 Design Freedom

For clarity of discussion, some notation is developed briefly. Consider
the standard modal representation for a flexible structure

n + 2ZA + a2(• B•FTB)u

S(cpOn) (CVP)
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where

T is the vector of modal coordinates

*: n x n is the diagonal matrix containing the modal
frequencies w1 ,..., n

Z: n x n is the diagonal matrix containing the modaldamping ratios E ,...,n associated with

inherent material damping

1: n x n is the matrix with columns that are the struc-

tural mode shapes n

BF: n x m is the static gain matrix of the actuators

driven by the control u = (up .. ,um)T

C £ x n and CV: I x n are the static gain matrices of the displace-
ment and rate sensors, respectively

y (yl,...,y£iT is the system output

Superscript "T" denotes matrix transpose

Several recent investigations into controller design for large flexible
space structures have uncovered substantial potential for improved system per-
formance through design freedom which was made available by relaxing restric-

tions on the rank of certain parameter matrices formed from 0TBF and (CpICv)0

through mode selection. These studies are described as follows:

(C) Study of a suboptimal output feedback approach [6-2) revealed
that the equation for the feedback gain matrix has an infinite
number of exact solutions when a reduced order observation matrix
associated with (C p,Cv ) has less than full rank [6-3]. Specific

indications of potential benefits to be gained by exploiting this
nonuniqueness were given.

(2) A study of techniques for alleviating control and observation
spillover associated with reduced-order controllers 16-4] through
the placement of actuators or the synthesis of their influences
revealed that spillover to certain classes of modes can be pre-

vented if a reduced-order matrix associated with tT BF is allowed
to have less than full column rank.
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(3) In a study of damping and stiffness augmentation through output
feedback [6-51, it was observed that the equation for the feed-
back gain matrix that realizes prespecified closed-loop damping
(A) and stiffness (K) matrices has an infinite number of solu-
tions when reduced-order matrices associated with ITBF and

(Cp,Cv)0 are allowed to have less than full rank. Specific indi-

cations of potential benefits from such freedom of choice are
given. The relaxation. of the usual assumptions on the closed-
loop matrices A and K also contributes to the freedom of choice.

Similar investigations of freedom in estimator design have been made [6-61.

Freedom of choice in design can be of the most value when particular as-
pects of it can be characterized and systematic procedures for effectively
exRpting it can be developed. This point is worth clarifying by describing
a specific and significant result of this nature in some detail. Consider the
capabilities of full-state feedback in a linear time-invariant multivariable
system

Ax= x+ Bu ; u - Kx + Ln (6-1)

y = Cx (6-2)

wi.ere

x C(x )... x)T

u (u1,...,um)T

y 1(y,1...,y)T

(n represents an external input). The property of controllability [6-7] has
been characterized in the frequency domain as the .=bility to find a matrix K
such that the poles of the closed-loop system matrix A + BK formed from
Eq. (6-1) coincide with an arbitrary preassigned gymmetric set of complex
numbers [6-8]. It is easy to show, using the companion canonical form [6-9)
for controllable systems, that if there is only one input (m - 1), specifica-
tion of all the (n) closed-loop eigenvalues determines the (n) elements of an
associated matrix K uniquely. This uniqueness disappears when more than one
input is present, wich leaves open the pcssibility of choosing the (nm)
elements of the feedback gain matrix to achieve desirable properties of the
closed-loop system beyond the assignment of eigenvalues. The problem of
characterizing this freedom of choice was recognized as a significant open
question quite recently (6-10].
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A very elegant characterization of this freedom was provided subsequently
by Moore [6-111 and Klein [6-121 (an amplified version of [6-111 can be found
in t6-131). In essence, this characterization states that the freedom beyond
'he ability to assign eigenvalues is the ability to assign associated eigen-
vectors. Although such eigenvectors cannot be selected arbitrarily, the re-
strictions upon the class from which the eigenvectors must be taken are quite
mild. A precise statement of this result (Theorem 6-2) is given in Section
6.6.1.

Once such a characterization is established, attention is focused on dis-
covering the most effective means for exploiting the indicated freedom. Whereas
the assignment of eigenvalues determines the speed (i.e., natural frequencies,
damping ratios) of the closed-loop dynamics, the assignment of eigenvectors de-
termines the shape of those dynamics. Expressing the general solution for the
closed-loop dynamics in spectral form which explicitly displays the eigenvalues
and eigenvectors provides some insight into possible approaches for selecting
candidate eigenvectors 16-13). However, considerable ingenuity is needed to
find the most advantageous selections; a number of different approaches have
been proposed [6-11, 6-12, 6-13, 6-14, 6-15, 6-16, 6-171, and several of them
proceed so as to -educe the sensitivity of the eigenvalues and eigenvectors to
perturbations in the closed-loop system matrix. Once a set of eigenvectors
satisfying the requirements of Theorem 6-2 has been selected, the corresponding
gain matrix can be determined readily by following the constructive procedure
given in the proof of the theorem t6-131. In Section 6.6.2, a few detailed re-
marks regarding the art of selecting appropriate eigenvectors are given.

6.3 Case Study: Numerical Implementation of SuboptimalOutput Feedback "on-

6.3.1 Backaround

When the Kosut approach to suboptimal output feedback control [6-2] was
reexamined recently to investigate its applicability to reduced-order control-
ler design for flexible spacecraft [6-18], the potential for substantial free-
dom of choice in gain matrix selection came to light. Theoretical development
characterizing this freedom and examples illustrating the potential for ex-
ploiting this freedom are given in [6-3]. The essential observation that
generates the added design freedom is the algebraic consistency of a linear
equation for determining the output feedback gain matrix, even when the coeffi-
cient matrix is rank-deficient. In such cases (i.e., rank deficiency), a whole
family of exact solutions for the feedback gain matrix exists; parameterization
of this family may often be selected to improve the performance of the full-
order system which is driven by a reduced-order controller.

However, for this design approach to be feasible with large-order sys-
tems, a reliable computational procedure for dealing with rank-deficient linear
algebraic equations is needed. Solution of such equations is a very delicate
numerica, problem; useless results are virtually certain if traditional solu-
tion procedures (e~g., Gaussian elimination) are used [6-19; pp. 200-218]. In
this section, a mature version of a computational procedure initially outlined
in [6-20] for obtaining the general solution of rank-defieient linear algebraic
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equations is presented. This procedure takes advantage of the special struc-
ture associated with the underlying controller design problem and expresses
the solution in a form particularly appropriate for using the design freedom
inherent in the extended Kosut approach [6-21].

It should be observed that the difficulty in solving rank-deficient
linear equations is not algebraic; the theory is classical [6-22; pp. 73-1091.
Rather, the difficulty is due to inevitable rounding errors that occur in
actual computations which make the numerical determination of matrix rank
extremely difficult [6--231. Considerable work has been done on this problem,
but very little of it has been reported in standard numerical analysis text-
books [6-24, 6-251. Attempts to extend Gaussian elimination methods to treat
rank-deficient equations have not proved very successful, especially when an
accurate determination of rank is required [6-26, 6-27]. Considerably more
success has accompanied development of iterative solution techniques, most of
which are designed specifically for use in problems with sparse coefficient
matrices [6-28, 6-29, 6-30, 6-31, 6-32]. The most successful development to
date has been a direct (i.e., noniterative) technique based on an algorithm of
Golub and Kahan [6-33] that employs a decomposition of the coefficient matrix
to display its singular values 16-34]. This technique has been published as
an ALGOL procedure 16-351 and incorporated into widely available robust mathe-
matical software 16-36]. It is widely recognized as the only reliable ap-
proach to problems in which an accurate determination of numerical rank is
essential [6-23, 6-341. A precise development of what "numerical rank' really
means has appeared recently [6-371.

For the present application, precise determination of the rank of the
coefficient matrix in the gain equation is very important since the number of
free parameters in the general solution for the gain matrix is proportional to
the rank deficiency of the coefficient matrix [6-3]. Moreover, the structure
of the underlying control design problem suggests that the coefficient matrix
generally will be dense rather than sparse. Therefore, the procedure for
numerical solution of the Kosut gain equation is built around the singular
value decomposition.

6.3.2 Problem Statement

The algebraic equation to be wilved numerically has the form

AX = B (6-3)

With reference to the underlying problem of reduced-order controller design
[6-31, matrices A: I x £ and B: £ x m have the structure

T T * T
A CPCC , B F PCC (6-4)
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where

C I x 2N is the state-to-output observation matrix in a reduced-order
plant having 2N states, m inputs, and X outputs

:4

P: 2N x 2N is the symmetric positive-definite solution of a Liapunov
matrix equation associated with the stable closed-loop
system matrix of a reference plant of order 2N

F mx Z is the full-state feedback gain matrix in that reference
plant

The gain matrix to be determined is G = XT: m x .

It iollows directly from the structure of A and B (Eq. (6-3) and (6-4))
that the gain equation, Eq. (6-3), is always algebraically consistent, regard-
less of the rank of A (= rank (C )) [6-3].In other words, the best least-

squares approximation to a solution of ..q. (6-3) is, in fact, an exact solu-
tion. When the coefficient matrix A is rank deficient, say rank (A) - r < X,
the general solution of Eq. (6-3) contains m • (U - r) arbitrary parameters
[6-31. The problem treated is to develop a procedure for computing the gen-
eral solution to Eq. (6-3). The procedure is designed so that the free param-
eters are displayed explicitly in a manner that facilitates their selection
for improving the performance of the full-order (finite-dimensional) plant
driven by the reduced-order controller in the underlying control design prob-
lem. Before this is described, a few essential facts about generaliz'.. in-
verses and the singular value decomposition are reviewed.

6.4 Some Facts from %inear Algebra

6.4.1 Generalized Invirses

A matrix is invertible if it is square and nonsingulr. Otherwise, in
general, some restriction of its domain (viewing the matrix as a mapping) is
required before any property of invertibility can be achieved. The notion of
a generalized inverse makes the appropriate restrictions and the corresponding
invertibility properties precise.

The Moore-Penrose inverse of a real matrix A: v x V is the unique solu-
tion of the equations 16-38, 6-39]

AXA n A (6-5)

XAX = X (6-6)

(AX)T . AX (6-7)
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(XA)T =X (6-8)

and is denoted by A : v x P. It is identical with the usual inverse of A when
A is square and nonsingular. A key to understanding this notion is the geo-

metric interpretation of the composite maps A tA and AA t as projections. In
particular [6-381

AtA is a projection onto R(At) along N(A), (6-9)

AAt is a projection onto R(A) along N(At)

where R(.) and N(.) denote the range and null spaces, respectively, of their
arguments. That those projections are orthogonal follows from the relations
16-401

R(A t) N(A), N(A% = R(A)I

which can fie deduced directly from Eq. (6-5) through (6-8); the superscript .
denotes the subspace orthogonal-complement relative to the usual inner product
in finite-dimensional spaces. Complementary (orthogonal) projections are

I - A tA and Ii - AA t, respectively, where I denotes the v x v identity ma-

trix. The appropriate restriction of the domain of A is now evident; restrict-

ing A to N(A) converts A tA to the identity map on N(A) .

The Moore-Penrose inverse can always be represented explicitly. The de-
composition of a general matrix in the form

A a BC

where B: u x p, C: p x v, and p = rank (A), is always possible 16-41]. Repre-

sentations for Bt and Ct are 16-421

Bt = (BTB)-I B , Ct . CT(CCT)-1
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and finally

At = CtBt

However, it should be noted that the relation

00 t . CtBt

is not always true for arbitrary matricbs B and C [6-431.

One of the chief applications of the Moore-Penrose inverse is in repre-
senting the solutions to linear algebraic equations of the (vector) form

Ax = b (6-10)

If Eq. (6-10) is algebraically consistent, then its general solution can be
written as [6-381

x = Atb + (I A -tAA)w (6-11)

where w is an arbitrary vector. Note that, since b is in R(A), Eq. (6-11)
is an orthogonal decomposition (cf. Eq. (6-9)). If Eq. (6-10) is not

algebraically ccnsistent, then the product A tb is the least-squares approxi-
mation of minimum norm. Further details on the Moore-Penrose and other gener-
alized inverses may be found in [6-44].

6.4.2 Singular Value Decompositiot,

The symmetric products A TA and AAT of a rectangular matrix A have the
same nonzero eigenvalues, and each has the same rank as that of A; The non-

negative square roots of the (real) eigenvalues of AT A are called singular
values of A. They have importance for numerical linear algebra because they
are much less sensitive to perturbation in the elements of A thnn are the
eigenvalues of A 16-23].

Any rectangular matrix A: p x v with rank p can be decomposed to display
its singular values ... _> p > 0 0 jo ) "'" a as follows 16-34]

A- UvT (6-12)
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where U: p x V and V: V x v are orthogonal (unitary if A is complex) matrices,

and Z: v x v is a partitioned matrix with D - diag (a,,...,o ) *in the upper

left p x p block; the remaining blocks are zero. The simplicity of existence
proofs for this decomposition [6-34, 6-453 stands in Aharp contrast to the
involved details of reliable algorithms for computing it [6-33). This is a
reflection of the comparative difficulty between analytical and computational
determination of matrix rank since the number of nonzero singular values is
equal to the rank of the matrix.

The columns of U and V in the singular value decomposition Eq. (6-12)

have an important geometrical interpretation. If U [Ul U2] and V [VI*v 2]
are partitioned to be compatible with E, it follows from writing Eq. (6-12) in
the form AV UE that [6-331

Columns of U1(U 2) form a basis for R(A) (R(A))

Columns of V (V 2) form a basis for N(A)i (N(A)) (6-13)

These interpretations are used to develop an expression for the general solu-
tion of the Kosut gain equation, Eq. (6-3), appropriate for the intended ap-
plicatidn.

Finally, it should be observed that the Moore-Penrose inverse is easily
expressed in terms of this decomposition

t
A = VEuT (6-14)

where the only nonzero block of Z is the upper left p x p block D = diag-o1 -lp
(0 ...,c ).

6.4.3 An Expression for the General Solution

In examining solutions of the matrix Eq. (6-3), it is sufficient to
consider vector equations of the form of Eq. (6-10). It is assumed that Eq.
(6-10) is algebraically consistent. It was shown previously [6-31 that the
general solution to Eq. (6-10) can be expressed in the form

x A Atb + y (6-15)
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where the columns of S: I x (I - r) formt- busisa,16r N(A) and. : (.- r) x 1
is arbitrary. The classical expression Eq. (6-10) or ,the general i6luiioc of
Eq. (6-10) differs from Eq. (6-15) in a qualitative manner ýth't is irrtant-
for the intended application; namely, it appears that there &re more i tbitrei,-j
parameters available. This is misleading.

Theorem 6-1

Equations (6-11) and (6-15) are equivalent solutions of 9q. k6E40).

Proof
tIf A has maximum-rank, there is nothing to prove, since then A-A A I

and S is the empty matrix. Assume rank (A) - r < Z.

(+) Let w: Z x I be arbitrary, and investigate the solvability of the
linear system

SY U (II - A A)w

for y: (4 - r) x 1. It follows from Eq. (6-9) that I£ - A A is a projection
1 L-r

onto N(A). Since the columns s ,...,s of S form a basis for N(A), there
exist numbers y 1 (y 1A....,yr) such that

I -r (I t,Y I Yi .si (I I- A A)W

(+) Let y: (2 - r) x I be arbitrary, and investigate the solvability of
the linear sysLem

(II - AtA)W - Sy

for w. By the definition of S: Sy c N(A). Since 12X - AtA is a projection

with range equal to N(A), there exists such an w.V

It is clear from this result that there are at most 4 - r "effectively
independent" choices of free parameters in the general solution of Eq. (6-10).
The representation in Eq. (6-15) is therefore more appropriate for the appli-
cation intended, and it is the foundation for the solution procedure to be
developed. More precisely, the matrix form of Eq. (6-15) corresvc-ading to
Eq. (6-3) is used 24
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X = At B + sr

where r: CU - r) x m is arbitrary. Note that the matrix V2 of Eq. (6-13)

forms a natural choice for a basis of N(A) and is available directly from the
decomposition, Eq. (6-12).

6.4.4 A Numerical Procedure

In the numerical procedure to be described, the focus is on the case
that the coefficient matrix A in Eq. (6-3) is rank deficient. Otherwise, the
solution is unique, therc are no free parameters, and standard linear-
equation-solving techniques can be used unless there is some reason to suspect
A to be ill-conditioned with respect to matrix inversion. The rank-deficient
case is the most interesting because of its beneficial potential for the
underlying controller design problem.

The procedure consists of three basic parts: determining the numerical

rank of A; comput:ulg the particular solution A tB; and computing the general

solution A tB + sr.

6.4.4.1 The Procedure

Step 1. Determine the numerical rank of the coefficient matrix
TDenote by rk n.) the numerlcal rank of the indicated matrix.)

An

(a) Form the product A = CCPC (cf. Eq. (6-4)).

(b) Compute the singular value decomposition of A, obtaining matrices
U and V, and singular values ai ,..., )a (cf. Eq. (6-12)).

(c) Make an intelligent judgment as to vbich singular values ar+l,...

a should be considered zero (i.e., those considered to consist

simply of an accumulation of roundoff errors) (cf. Note 1).

(d) Tentatively assign rk n(A) - r.

(e) Estimate the numerical rank of the sensor matrix CC by repeating

steps corresponding to Items (b) and Cc). If rkn(CC) C rkn(A),

stop execution and investigate (cf. Note 2).

(f) Form the product B C CPF (cf. Eq. (6-4)).
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(g) Estimate the namerical rank of the augmented matrix [A:B] by re-
peating steps corresponding to Items (b) and (c). If rk n([A:B])

# rk (A), stop execution and investigate (cf. Note 3).
n

(h) When the estimates for numerical rank in Steps (e), (f), and (g)
agree, assign to r0 (n) their common value.

nt

Step 2. Determine the particular solution A tB.

(a) Compute At using the matrices U and V from Step l(a) and the diag-DO1 - , -ro

onal matrix D = disg (oa *,. ), where r rkn(A) (cf. Eq.

(6-14)).

(b) Compute AT B (cf. Note 4).

Step 3. Determine the general solution A tB + sr

(a) Select a matrix r: (C - r 0 ) x m of parameter values (arbitrary).

(b) Choose a matrix S: X x (U - ro) with columns that form a basis

for N(A) (cf. Note 5).

Cc) Compute the general solution X A 'tB + sr (cf. Note 6).

6.4.4.2 Notes Referenced in the Procedure

(1) This task is nontrivial, and an understanding of the underlying
physical problem is usually essential 16-461. The purpose of
Steps i(e) and l(g) is to contribute some of this insight to the
final assignment of a value to rk (A).

n

(2) Theoretically, rank (CC) = rank (A) (6-31. In most c.ses, com-

putation of the numerical rank of CC will be subject to less

error than computation of the numerical rank of A. In some
cases, it may be possible to determine rank (C C) by inspection,
which then determines the numerical rank of A.

(3) Theoretically, rank ([A:B]) = rank (A) [6-3].

(4) In actual computation, At need not be calculated explicitly; the

solution A tB is more efficiently computed as Lhe product (cf. Eq.
(6-14))
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AtB (Vt M)(UIB)

(5) The basis chosen need not be a mutually orthogonal one. However,
an orthogonal basis is-readily available as the set of those
columns of V (cf. Eq. (6-12)) which correspond to the zero singu-
lar values of A (cf. Eq. (6-13)).

(6) For a given control design problem, Steps 1 and 2 of the proce-
dure need only be done once. Step 3 may be computed repeatedly
with different choices for r and S until satisfactory control
system performance improvement is achieved.

6.4.5 Summary

In order to be able to take advantage of the design freedom inherent in
the extensions (6-3] to the Kosut 'nethod of suboptimal output feedback, a
numerical procedure has been developed to compute the general solution to the
gain-equation in the rank-deficient case. The procedure is based upon a com-
putation of the singular value decomposition for the coefficient matrix and
expresses the solution in a form that facilitates exploiting the available de-
sign freedom. The design freedom consists of:

(C) A choice of the basis for the null space of the coefficient
matrix.

(2) A choice of free parameters j!,portional in number to the rank
deficiency of the coefxicient matrix.

One candidate for a choice of the basis vectors is provided explicitly by the
procedure. Choice of the free parameters may be motivated by consideration of
the full-order closed-loop system equations that contain the reduced-order
controller under study.

6.5 Conclusion

Considerable effort has been devoted to characterizing the design free-
dom with suboptimal output feedback that was recently uncovered and to devel-
oping methods for exploiting that freedom. In the present section, this
effort has been placed in a much broader context by showing the close rela-
tionship with other significant work relating to design freedom and indicating
the rapid development of interest in such matters. We believe that, in re-
sponse to increasingly stringent spacecraft performance specifications, an in-
creasing amount of attention will be given to discovering, characterizing, and
developing systematic approaches to exploiting available freedom of choice in
design.

27



7FT4~~~ 7-1-

6.6 Addenda

6.6.1 Characterization of Design Freedom with State Feedback (m > 1)

The system of Eq. (6-1) is being considered. In order to facilitate a
concise statement ref the main result, several preliminary ideas are neces-
sary. First, recall an alternate characterization of controllability in the
frequency domain:

Fact 6-1 (6-47; pp. 71, 1611. The pair (A,B) is controllable if and only if

the polynomial matrix X + S(A) [XI - A:B] has linearly independent rows forn

each complex number X.8

Second, note a particular property of such polynomial matrices:

Fact 6-2 [6-47; p. 194]. If (A,B) is controllable, there exists a matrix

function X + ~IzNWI which, for each complex number X, forms a basis for the

null space of S(M).

The main result is stated in terms of the n x m matrix function N(O):

Theorem 6-2 [6-131

Assume that the pair (A,B) is controllable and that a set of distinct
complex numbers X., i - 1,...,n (containing the conjugates of each of its

I

elements) is given. Then there exists a real full-state feedback matrix K
(cf. Eq. (6-1)) such that

(A + BK)v• = . , i ,...,n

i

if and only if the (eigenvectors) vi satisfy the following:

(1) The collection {v ijil is linearly independent over the complex

field.

(2) The collection of related pairs {I(i,vi)Iin, are such that

j= v if X. A. (where"- denotes complex conjugation)3 1

(3) For each i: v e span [N(Ai)].

Mcreoever, any i K is unique.U
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This result can be modific4 appropriately to eliminate the need for
assuming controllability of the pair (A,B) [6-11] or for assuming that the
assigned closed-loop eigenvai.es are distinct [6-121.

6.6.2 Exploitation of Design Freedom with State Feedback (m > 1)

A spectral characterization of the closed-loop output dynamics of
Eq. (6-1) and (6-2) is given readily. For simplicity, assume distinct and
stable closed-loop eigenvalues and a step input.

Fact 6-3 [6-131. Assume the eigenvalues of A + BK are distinct with negative
real parts. Let n(t) = n = constant. Then

y -)CVe yx(O) + CVe AtA-Iv-BLns , $t>

and

yo =-VA VA IvBLn

where [ 1* i) N [I. " displays
where A diag (X displays the eigenvalues, and V v .1.... d

the eigenvectors, respectively, of A + BK.E

The reader is referred to [6-13] for specific suggestions on how to use
this representation effectively as a guide in selecting the eigenvectors to
shape the dynamics o' the response y(t) - y.. In particular, the potential

for eliminating effects of a given mode upon as many as m - 1 of the output
components is of interest. It should be noted that much more. freedom of
choice really exists than is actually exploited in [6-13], since all but one
of the eigenvectors are assumed fixed.
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SECTION 7

STOCHASTIC OUTPUT FEEDBACK COMPENSATORS
FOR DISTRIBUTED PARAMETER STRUCTURAL MODELS

7.1 Introduction

This section presents recent progress on the stochastic output feedback
design problem for distributed parameter plants. The results presented are an
extension of those described in Section 2 of Reference 7-1. The desire to de-
sign optimal output feedback compensators for distributed parameter flexible
models motivated consideration of the following problem.

Given a cost functional J() defined over some set r of admissible com-
pensator designs for the unknown distributed parameter plant P, determine the

optimal design K that minimizes J(.) over r.

To accomplish this, define a sequence of finite-dimensionai approximat-
ing plant models {P ) along with an associated sequence of cost functionals

*

0J (.) and determine the optimal compensator designs K that minimize Jn(.)n n n
over r. For "reasonable" choices of P, T, J(-), and the approximating scheme

defining P and Jn(.), one would expect that the optimal compensators Kn,
n n n

should converge to K as n + -. However, it is not obvious exactly what con-
stitutes a "reasonable choice" of P, r, J(.), (Pn}, and 3 n(.)}. For example

(7-21, in the special case when P is an undamped flexible structure, linear
regulators designed from truncated normal mode models P do not converge to an
limiting linear regulator for the plant P. Consequently, it is extremely im-
portant to qddress the following fundamental questions:

,

(1) When does a set S C r of optimal designs for the plant P exist?

(2) When do the corresponding sets S exist for the plants P ?
n n

(3) If the sets S exist for all n, does the sequence (S converge to
n n

some set S Cr?

(4) If the sequence (Sn} converges, does it converge to S ?

Sufficient conditions are developed in this section for the answers to
each of these questions to be at least approximately "yes". The results
reported previously [7-11 addressed only the last of these questions, provid-
ing sufficient conditions for the optimality of the limiting set of compensa-

tors to which the sequence (S *I converged, assuming the sequence converged.
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Continued investigation has shown that some of the key theorems employed in
establishing these results are special cases of more general results [7-3].
In particular, the results of Reference 7-3 are sufficient to guarantee the

existence of the sets S and S n, the convergence of the sequence [S 1, and the

optimality of the limit. Further, these results are applicable to infinite-
dimensional design sets r, which suggests the possibility of developing con-
vergence conditions for infinite-dimensional compensators like the linear
regulator considered in Reference 7-2. The price paid for this increased
generality, however, is the necessity of dealing with weak convergence and re-
lated lkaqsch space concepts. If these results are specialized to the original
problem for which r is finite dimensional, the strong convergence results con-
jectured in the conclusions of Reference 7-i, Section 2 are obtained,

Consequently, the results of this section are presented in the following
format. First, the notion of weak convergence and weak compactness are
introduced in Section 7.2, and their importance is established in the context
of the problem considered herein. Next, the general results of Reference 7-3
are presented in Section 7.3. Specifically, sufficient conditions on X(),

J (.), and r are presented for sets S and S of global minimizers of 3(0) andn n
J n(.) to exist along with sufficient conditions to guarantee that the sequence

(S*} converges weakly to a subset of S as n + -. Once these general results
n

are established, they are specialized in Section 7.4 to the original problem
where the set r over which J(.) is minimized is finite dimensional. This
yields a variety of existence and convergence results for the optimal fixed-
form compensator design problem, which culminates in Theorem 7-6. Theorem 7-6
provides sufficient conditions for the answer to the four questions posed pre-
viously to be approximately "yes". The implications of the requirements and
conclusions of Theorem 7-6 are discussed briefly in Section 7-5 to make these
answers more precise.

7.2 Notion of Weak Convergence and Weak Compactness

In the results developed in Reference 7-1, the compactness of closed,
bounded subjects of the set r of admissible compensators played an essential
role. If r is defined on an infinite-dimensional Banach space, however, it is
no longer necessarily true that closed, bounded subsets of r are compact. For

example, the set [x e B I flxl < M) is compact if and only if the space B is
finite dimensional (7-41. Consequently, to extend the results of Reference
7-1 to problems for which r is defined on an infinite-dimensional Banach
space, it is necessary to introduce the notions of weak convergence and weak
compactness.

First, recall that a Banach space is a normed linear vector space that
is complete in its norm (e.g., given a sequence (xn such that x c B for alln n
n and I IXn - xli + 0 as n +, it follows that x C B). Convergence of this
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type (e.g., given c > 0, there exists N such that > N - x < e for

all n > N) is a strong convergence, denoted x n x, and it corresponds to the

usual notion of convergence in the Euclidean space R n for any finite n.

If B is an infinite dimensional Banach space, then a weaker type of con-
*

vergence is possible. Defining B as the dual space of B (i.e., the space of

bounded linear functionals mapping B into R ), {xW converges weakly to

x (x Y x) if lf(xn) - f(x)I + 0 as n + - for all f c B . The implication that

convergence implies weak convergence is a standard result 17-4, 7-5], but the
converse is not true unless B is finite dimensional.

Since B is a Banach space, the second dual space B of B is well de-
fined and it is another standard result [7-6] that B may be identified with a

subspace B of B In general, this inclusion is proper, but a reflexive

Banach space is one for which B - B . This is a very broad class of spaces,
which includes all Hilbert spaces and, as a consequence, all finite-

dimensional Euclidean spaces Rn. For the problem considered here, the most
significant feature of this class of spaces is that all bounded sequences {x nn
(i.e., all sequences such that I1 xn (H< for all n) have weakly convergent

subsequences (7-51. Consequently, any countable, bounded sequence on a re-
flexive Banach space may be decomposed into (possibly a countably infinite
number of) convergent subsequences, each of which converges weakly to some
limit in B.

This fact may be used to define the notion of weak compactness on re-
flexive Banach spaces. Specitically, in analogy with sequential compactness,
a set S is weakly sequentially compact if every sequence {x n in S has a weak-

ly convergent subsequence that converges to an element of S. Since compact-
ness and sequential compactness are equivalent on metric spaces 17-4], the
term "weak sequential comp-ctness" can be shortened to "weak compactness" or
"nw-compactness". Similarly, weakly closed (w-closed) sets may be defined as
sets containing all of their weak limit points (i.e., S is w-closed if x n Sn

for all n and xn Y x together imply x c S). It then follows from the preced-

ing result that if S is a we3kly closed, bounded subset of a reflexive Banach
space B, then S is weakly compact. Thus, the concepts of weak convergence and
weak compactness play the same roles in infinite-dimensional, reflexive Banach
spaces that their strong counterparts play in finite-dimensional spaces.

Finally, it is important to note that weak closedness is a "stronger"
notion than ordinary (i.e., strong) closedness in spite of its name. Speci-
fically, if a set is weakly closed, it is also strongly closed since if x n Sn

for all n and Y x then xn x, implying x c S. The converse, however, is
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not generally true. A special case for which the two concepts are equivalent
occurs, though, when S is convex also [7-3] (i.e., given x1 ,x 2 C S, it follows

that XxI + (Q - O)x2 c S for all 0 < X < 1). Thus, if a subset S of a reflex-

ive Banach space B is closed, bounded, and convex, it is weakly compact.

7.3 General Existence and Convergence Results

The following paragraphs summarize the pertinent results of Reference
.

7-3 concerning the existence of global minimizers x oi a functional f(.) de-
fined on a reflexive Banach space B and the weak convergence of the global

minimizers xn of a sequence of approximating functionals {f (.)} to x as
n n

n + c. In particular, very general sufficient conditions are developed for
both of these situations to occur. More specifically, the first problem con-
sidered is as follows.

Given f(.): E + R for some E C B, what conditions ou E and f(.) are

sufficient to guarantee the existence of a set S C E such that x C S im-

plies f(x *) < f(x) for all x c E? First, define the following constructs.
The functional f(.) is lower semicontinuous (lsc) on the set E if [7-3, 7-7]

the set {x c Elf(x) > X1 is open for any real X or the set {x c Elf(x) < X} is
closed for any real X. Alternatively, define lsc functions sequentially [7-5,

7-7, 7-8] (i.e., f(.) is lsc on E if for any sequence {xn} c E with xn I x, it

follows that f(x) < lir inf f(x )). Strictly speaking, this latter deacrip-
n~oo n

tion defines a sequentially lower semicontinuous function, but it is noted
in Reference 7-3 that while considering strong convergence, the two concepts
are equivalent [c.f. 7-7]. This is not the case, however, if weak convergence
is considered. That is, we can define f(.) as a weakly lower semicontinuous
(wlsc) function on E if for any real X, the set [x e E f(x) < X} is weakly
closed, and define f(.) as a weakly sequentially lower semico-ntinuous (wslsc)
function on E if for any [xn} E E with x Y x it follows that f(x) < lim inf

n n n+w

f(xn). It is noted in Reference 7-3 that weak sequential lower semicontinuity

is generally a weaker property than weak lower semicontinuity, i.e., if f(.)
is wlsc, it is wslsc, but the converse is not generally true.

Similarly, as in the case of strongly and weakly closed sets, it is
important to note that weak lower semicontinuity is a "stronger" concept than
(strong) lower semicontinuity. Specifically, if f(.) is wlsc on E, then the
set {x c Elf(x) < X) is weakly closed, hence closed for all real X, which

implies that f(.) is lsc on E. Again, as in the case of strongly and weakly
closed sets, the converse does hold if additional conditions are imposed on
f(.). Specifically, the functional f(.) is quasiconvex [7-31 on the convex
set C if the set (x e Clf(x) <( } is convex for all real X. Thus, if E ic

convex and weakly closed and f(.) is Isc and quasiconvex on E, the set

Nx e Elf(x) < X} is (strongly) closed and convex, hence weakly .closed,
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implying f(.) is wlsc on E. Note that the notion of a quasiconvex functional
is a generalization of the more common notion of a convex functional, which is
defined on a convex set C as one for which

f(XxI + (1 - X)x2) < Xf(x 1) + (1 - ))f(x2)

for any x1, x2 c C and 0 < X < 1. It is noted in Reference 7-3 that a quasi-

convex functional is one for which

f(XxI + (l - X)x 2 ) < max[f(x 1 ),f(x2)]

for any xP, x2 c C and 0 < X < 1. Since

Xf(xI) + Q -1X)f(x2) < max[f(x1),f(x-2

for all 0 < X < 1, it is clear that f(.) is qucsiconvex if it is convex.

Given the definition of weak sequential lower semicontinuity just pre-
sented and the notions of weak convergence and weak compactness presented in

Section 7.2, it is simple to establish the following existence result for S

Theorem 7-1 (17-31, Theorem 1.4.1)

If f(.): E + RI is wslsc on the weakly compact set E, there exists a

nonempty set S C E such that x C S implies f(x*) inf f(x).
xcE

Proof

Let

f inf f(x)
xcE

By definition of inf f(x), there exists a sequence {x n C E such thatn

lim f(x ) f
n+oo n
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[*

Since E is w-compact, there exists some x c E and a subsequence {x } of {xn}
n k n

such that x n x. Clearly, since f(x ) n f , f(x ) + f also. Thus,nk n nk

since f(*) is wslsc

x ÷x => fx)< lira inf f(x )=f < (*
nk n+wn --

Thus, x c S .

Unfortunately, in the applications considered here, the set E (corre-
sponding to the set r of admissible compensators in the optimal compensator
design problem) generally is not bounded, hence nct w-compact. If additional
constraints are imposed on f(.), however, it is possible to guarantee that
f(-) exhibits a set of global minima on some w-compact subset V' of E. Spe-
cifically, f(.) satisfies a T-property on E if there exist x0 c E and To > 0

such that x T implies f(x) > f(x ) for any x c E. As the follow-
0%

ing theorem shows, if f(.) satisfies a T-property on a w-closed set E, the op-
timization can be restricted to some w-compact subset of E.

Theorem 7-2 (adapted from [7-3], Theorem 1.4.2)

Suppose E is a weakly closed subset of a reflexive Banach space B. If

f(-): E + R is wslsc and satisfies a T-property on E, then there exists a

w-compact subset C of E and a set S C C such that x c S implies

f(x*) - inf f(x)
XCE

Proof

Let S(xo,TO) be a strongly closed sphere of radius T 0 about x0 c E.

Since the set is st-'ongly closed and convex, it is weakly closed and bounded,
hence weakly compact.

Since E is weakly closed, the set

C - xcE" x -xo TO) s(xT )0 -E

is also weakly compact.
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Since f(.) satisfies the T-property, f(x) > f(x ) for any x c E but
x C. Thus

inf f(x) min inf f(x), inf f(x) inf f(x)xeE ' xec x•C ] xeC

Sx¢E

Since C is w-compact, the existence of a set S of global minimizers of
f(-) over C is guaranteed by Theorem 7-1.

It is possible to establish that f(.) satisfies a T-property in a
variety of ways. One of the simplest is to guarantee that f(x) increases as

increases. For example, f(-) is semicoercive on E if [7-7]

lim f(x)

and coercive if

lim f(x)
~~~~liii. 0 - = 0

from which it is immediately clear that any coercive function is semicoercive.

Lemma 7-1

If f(.): E + R1 is semicoercive on E, it satitifies a T-property.

Proof

Since f(.) is semicoercive, there exists some a > 0 such that

lim f(x)

tixt -l+

Thus, there is some constant M > 0 such that

IIxII > H, x C E _ > > .> f(x) - I IxII- ~~IIXII- -
I i 22
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Now, choose any x0 e end define

a 2f(x)
M , max M, a• + 4 ]

so that

il~llzMI,, x• c E > fc,) > a-I llx

SMI

* 
-2

> f(x +0 2

> f (xO)

Finally, note that, by the triangle inequality

lix- Xo(l -< 1 IIx1 4. tI-xoi1 = 1 + 1 1xofl

=> l11l _. Xl - oll - 11 Oil

Thus, if

T0 =H Xo I +M"I

it follows that

I I - xol >I o => If1 >- ' => f(x) > f(xo)
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Once it has been established that some set S of global minimizers of
f(.) over the weakly closed set E exist on some weakly compact set C, we can

turn to the problem of how elements of the set 5 are to be constructed. Spe-
cifically, consider the sequence {f (.)} of approximating functionals definedn
on the approximating sets {E n} for n - 1,... The basic question considered

here is "what relationship must exist between the approximating sequences

{f (.)} and {E * and f(.) and E to guarantee that solutions x* of the approxi-
n nn

mating problems lefined by fn () and En converge in some useful sense to an

element of S ?" A very useful answer to this question is developed in Refer-
ence 7-3 by introducing the concept of a "consistent discretization" of the
original problem. The remainder of this section is therefore devoted to
presenting a slight generalization of these results as the basis for the
results that follow. (The generalization is this: Reference 7-3 assumes that
the set E aver which f(.) is defined and minimized is the entire reflexive
Banach space B. In the problem considered here, E may be any weakly closed
subaet oE B.)

A discretization of the minimization problem of f(.) over C may be de-
fined [7-3] as a family of subsets {E } of reflexive Banach spaces {B }, an
family -f functionals {f n()} defined on En, a family of mappings [pn} of En

intoI E, a family of mappings {r a} of E into En, and a family of subsets [C n

of E The basic idea is that {fn (g)} {En)} {Bn } and {C n represent ap-

proaziwations, in some sense, of the components f(-), E, B, and C of the orig-
inal minimization probi.em, respectively. The mappings {pn} and {r } thusn n
rcp,'esent projections of the approximating sets {E n} onto the set E and the

se. E the approximating sets {En}, respectively. These definitions are gener-

al enough to allow the approximating problems and the original problem to be
defined on Banach spaces B n} and B that are qualitatively very different.

In particular, the approximating spaces {B } may be finite dimensional.n

Using these definitions, Reference 7-3 associates the following approxi-
mate problem with each discretization. Given a sequence { n} of positive

numbers converging to zero, consider the set S of elements x c C such thatn n n

fn(x ) < inf f (x) +
nn -- xC n n n

n n

Note that if there exists some subset S of C such that
n n
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f (x*) = inf f (x)n n ngn nn
xneCnn

for all x Sn, then it follows that

n*

f(x*) inf f (x) < inf f (x)+nfn n x EC n n -- x E: n n n
n n n n

for any ýn > 0, implying Sn C Sn.

In order to develop sufficLent conditions for the set of Sn to converge

in some sense to S , Reference 7-3 defines a consistent discretization as a
discretization of the original optimization problem that satisfies the follow-
ing constraints

(1) The set S exists for all n.
n

(2) lim sup [f(pnx f (x )] < 0 if x C S
n+co n n n n n n

(3) The sets Cn = pnCn U C are uniformly bounded.

n.
(4) If z e C i and z z, then z e C.n. n

* * X* ~*)
(5) For some x c S lim sup f (rx < f(x.

n+co n n

(6) For the same x c S r x e C .n n

Note that if p C C C for all n, Conditions (3) and (4) are satisfied auto-

matically. These conditions are sufficient to establish the following result.

Theorem 7-3 ([7-31, Theorem 2.2.1)

Suppose (f n(), E n, B n, G n, Pn , r n} define a consistent discretization,

and let K be a subset of E such that Cn C K for all n sufficiently large. If
C is weakly compact and xn c Sn for all n, then
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lim f(P ) = f ( f(x)
n+ nn n+÷i fn n

where x satisfies Conditions (5) and (6). Further, the sequence {Pn}n may

be decomposed into subsequences, each of which converges weakly to an element
•fsCs.

of ,i.e., p S *

Before proceeding with the proof of Theorem 7-3, the following lemma,
required in the proof, is established.

Lemma 7-2

The sequence {-y n converges to zero where
4. n

Yn = f(x*)- inf f(x)nce

and x e S.

Proof of Lemma 7-2

(1) First, note that since x C C C Cn , -yn > 0 for all n.

(2) Next, for ea.l: n, select some z n C n such that

f (z) < inf f xW +- f (x +n

(3) Now, choose N such that n > N -> Cn C K C B and note that since K

is bounded, the sequence {z n} is bounded for all n > N. Since B

is a reflexive Banach space, {z n may be decomposed into a collec-

tion of subsequences {z nk each of which converges weakly to some

z e B.
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(4) By Condition (4) of the consistency requirements

z z => z Cn k

so that f(x*) < f(z).

(5) Note also that since f(.) is wslsc on K

f(z) < lim inf f(zn)

< f(x*) + lir inf [
k÷ nknk

=> lir inf [L -y ) > 0
k+o÷ nk nk

(6) Thus

lir inf ] lir inf L - lim sup y
k+0 V k k~a* n k k+oo nk

im inf_ > lir sup y=>lr nf k _ k+00 n

> 0 > lim sup Y

> lim inf y > 0
-~o n k -

0> lim Y = 0
k+co nk

(7) Since this proof may be repeated for all subsequences {z de-

fined in Item 3, it follows that lirn y = 0.
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Proof of Theorem 7-3

(1) Take N and {yn} as in Lemma 7-2. Since x C S it follows

f(x*) inf f(x) + Yn

--< nPnxn) + -Yn for x c SO C C n

f n(x n) + Y n + nn

where nn =f(PnX - fn(Xn)

< inf f (x) + & + Y + n since x c
-x c n n n n n n n

n n

< f (rx + ,+ Y + n since r x c C by
n n rn n n n

Condition (6) of the consistency definition.

(2) Define 6 -f (r x*) - f(x*) so that

(I) 0> f(x ) < f(x*) + 6 + n + Yn + nn

W > 6 + •n+ Yn + nn > 0 for all n

0 > 0 < lim inf (6 + + Y + n)
-- ÷o n n n T

S< tim, sup (6 n+ •n + Y n + n1)

( 0
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Since lirn m = lrn = Y 0 and, by consistency Conditions (2)n~co n +< n

and (5), respectively, it follows that

lir sup n < 0
n+€o n1

and

lim.sup 6 ( 0
n+ao n

(3) Thus

lim (6 +xi) 0
n+w n n

Note that if lim inf n < a for some a < 0, there exists some sub-
n1÷oD n

sequence In so that

nn.< ja/2 < 0
1

for all i, implying there is some subsequence {6n.J such that

6 > -a/4 > 0
1

However, this implies

lim sup 6 > -a/4 > 0
n+w n

which contradicts Condition (5) of the consistency requirements.
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Thus

lim inf n > 0 > lim sup n 0> 1im n 0n4•o n n~co 0 n~o* n

Similarly, it follows that

lim 6 0
nwn

(4) Thus, it follows from the inequalities in Item (1) that

f(x*) - lim f(p x) lim f (x)
n~oo nn n÷ n n

(5) Finally, since C nC K for all n > N with K bounded, the sequence

(p x*) may be decomposed into subsequences that converge weakly to

limit points in B.

Since xn C Cn) PnX n Cn for all n so that by consistency Condi-

tion (4), if p x z, then z c C.
n knk

Further, since f(.) is wslsc on K

f(z)-< lim inf f(p x) f(x)

so z C S

Thus pS 1) ;s Cs
Tu n n inn } w S C Sn.

7.4 Application to Fixed-Form Compensator Design Problem

The results just presented are very general; thus, they are applicable
to a very broad class of problems including the fixed-form compensator design
problem of interest herein. Because of their generality, the conditions these
results impose on arbitrary optimization problems are somewhat hard to inter-
pret. However, if they are specialized to the optimal fixed-form compensator
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design problem, these conditions simplify considerably. Consequently, the
remainder of this section is concerned with the following special case.

The arbitrary functional f(.) will be replaced by the cost functional
J(.) defined over some set r of admissible compensator designs. It is impor-
tant to note that this is a departure from traditional optimal control prob-
lems in which J(.) is a functional on some function space U of control inputs
u(t). While it is true that a priori restriction of the control law to some
prespecified form may result in a performance degradation (i.e., the set of r
of admissible compensators may not be large enough to generate the control in-

put u *(t) that minimizes J(u) over U), it is also true that practical designs
will ba restricted to some set of admissible compensators anyway. Thus, the
approach developed is to identify the set r a priori on the basis of various
important practical considerations and to optimize performance within these
restrictions. In particular, it is assumed that once these restrictions have
been identified, a compensator form meeting these restrictions is selected
that reduces the design problem to that of selecting values for some finite
number X of deeign parameters that minimize the cost J(). Thus, the set r of

admissible compensator designs becomes a subset of the parameter space R£.

The most significcnt simplificatioTI inherent in this formulation of the
compensator design problem is that optimization is now carried out over the

finite-dimensional EuchLdean space Rk rather than the infinite-dimensional
space U. Consequently, since weak and strong convergence are equivalent in
finite-dimensional Be nach spaces, the results of the preceding section can be
used to obtain suffixoient conditions for the strong convergence of the ap-
proximate compensator designs to the desired optimal limit. That is, by for-
mulating the design procedure described in the introduction as a discretiza-
tion of the minimization of J(.) over r, sufficient conditions for the ccn-

vergence of the optimal parameter vectors k for the approximating plants Pn--nn

to the optimal parameter vectors k for the infinite-dimensional plant P may
be obtained.

In particular, the discretization defined by the design procedures is
the following. First, all minimizations will be restricted to the closed set

r C R (i.e., B n B a R and E n E = r for all n in the notation of the pre-n n
vious subsection). Consequently, the mappings of {pn} and {r n} appearing in

the definition of a discretization are all identity mappings in this case.
The approximate optimization problems associated with this discretization will

* ch
be the minimization of J (') over r (i.e., the set S of solutions to the n

n n

approximating problem consists of k c r such that Jn( ) inf J (k). In
-n n-n kcr n -

order for the design problem considered here to be well posed, it is, of

course, necessary that the sets {S } exist for all n. If Jn(.) and J(O) are
n n

required to satisfy the conditions of Theorem 7-3, for example, the existence
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of the sets {S n} and S is guaranteed as are the existence of the compact sets

{C ) and C containing {S } and S respectively. Note, however, that without
further restrictions on the functions {J (°)}, the compact sets {C } need notn n

bear any special relation to the set C. In particular, it is entirely pos-
sible that the sets {C ) are not uniformly bounded and will therefore not con-

verge to the set C in any sense as n + =, which suggests that the sets {S n

may not converge into the set S as n - =. If, however, it can be established
that the discretization just defined -satisfies the consistency requirements
developed in the preceding subsection, it will follow from Theorem 7-3 that

the sets Sn of optimal designs associated with the plants P will converge ton n

to a subset of thz set S of optimal designs associated with the plant P and
(*) J*) * * * *

that J (kn ) - J(k for any k c Sn and k * S . Specifically, combining the

definition of a consistent discretization with the conditions of Theorem 7-3
and specializing them to the present problem, the following result is
immediate.

Theorem 7-4

Suppose r is a closed set in R and J(.): r + RI is an lsc function ex-

hibiting some bounded set S of global minima over r. Suppose further that

each function Jn (): r + RI also exhibits some bounded bet Sn of global minima

over r and that the following conditions are met:

(1) S C K, S C K for some compact set K Cr.n

(2) lim sup [J(k) - J(k n) < 0 if k E S*n+- -n -- -- n it,

(3) lim supJ(k) < J(k*) for some k * S.

Under these conditions, the following results hold:

(4) S S C s*

n

(5) lim J (k*) = lim J(k) J(k*)

where k a Sn and k c S satisfies Condition (3).
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Note here that the compact set K defined in Condition (1) takes the

place of the sets (Cn} and C in the original definition of a consistent dis-

cretization. This guarantees that Conditions (3), (4), and (5) of the origin-

al definition are satisfied. Given the assumed boundedness of sets S and Sn

individually, it is clear that Condition (1) of Theorem 7-4 can be satified if

and only if the sets (S n} are uniformly bounded.

If Condition (1) of Theorem 7-4 is satisfied, Conditions (2) and (3) may

be replaced by a uniform convergence condition, as the following lemma

demonstrates.

Lemma 7-3

If Condition (1) of Theorem 7-4 is satisfied and if Jn(') + J(-) uni-
n

formly on the set K, then Conditions (2) and (3) are also satisfied.

Proof

(1) Condition (3) follows immediately since if Jn + J(-) uniformly
* * (*) J*)

on K, k e S C K -> J (k + J(k

Thus

!.im sup J (k) = lim J (k) J(k*)
WO n- n+w n -

(2) Similarly, since (" n.) + J(') uniformly on K, J(k) - n (k) + 0

uniformly for all k c K.

In particular, since k c S C K for all n, J(k ) - Jn(k + 0 as
-n n --n n--on

n + CO.

Thus

lima sup [J(k ) -J (k)] lim EJ(k ) -J (kn)] 0
nn- --n n n+w -n n n

and Condition (2) is satisfied. U
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To establish Condition (1), either one of two approaches may be taken,
resulting in either a constrained optimization problem or an unconstrained
optimization problem. In the first case, if J(*) is required to satisfy a
T-property, then it follows from Theorem 7-2 that there exists some compact

set C containing the set S of all global minimizers of J(.) over r. Conse-
quently, if each function J n() is lower semicontinuous on r, the existence

nn

7-1. Thus, applying Theorem 7-4 to the sets S leads immediately to Theo-

rem 7-5.

Theorem 7-5 (Constrained optimization)

Suppose r is a closed set in R and J(.): r + R is an lac function

satisfying a T-property on r. This guarantees that S C C for some compact
set C. Suppose (J (.)) is a sequence of l1c functions on C that convergesn

uniformly to J(.) on C, and let S denote the set of global minima of J (.)
n n

over C, guaranteed to exist by Theorem 7-1.

Under these conditions, the following results hold:

(1) S C SCS n +
n

(2) lim J (k**) lim J(k**) (k*)n÷•o n ,-,.n nv~oo -

where k c S and k c S

It is extremely important to note here that the sets {S ) are not the
* n

the same as the sets {S considered earlier. For example, suppose J(.)
n

satisfies the conditions of Theorem 7-5 and inf J(k) > 0. Then if the ap-
kcr -

proximating functions (J (.)n are defined byn

n 0 II II -> 5
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for all k e r, it follows that for n such that C n C Ln k c rl Ilki I <in

S = S , guaranteeing that S n S as n + - in agreement with Theorem 7-5.n n

The sets Sn, however, consist of all elements k of r not in Ln, ensuring that

J () = 0 = inf J (k)
n - kcr n -

Note that Jn (k) is lsc on r since J(k) is lsc on l.n, and 0 is obviously Isc

on r - L . Thus, the only points in question occur on the boundary S1 betweenn

L and r - L . Since Ln is open, r - L is closed so s Cr - L implying
n n n n n

a(k) = 0 < lim inf a(k )

if k c S for any sequence {k n in r. Note also for any compact set K C r,

there is some N such that J (k) = J(k) for all k c K if n > N. Thus, {J (n)}n ....- n

converges uniformly to J(.) on any compact subset of r.

To avoid these difficulties, the second approach to establishing that
Condition (1) of Theorem 7-4 holds is to strengthen the conditions on {J (.))

n

and J(.) as follows. First, uniform convergence will be required on all of r
rather than just compact subsets of r. This requirement will exclude the
pathologies exhibited by the last example, although even under this restric-

tion, another difficulty can arise. In particular, the fact that J(.) satis-
fies a T-property is not enough to guarantee that 3(k) does not approach

nf Jk) as II+ W. For enample, consider the one parameter cost function
ker -

illustrated in Figure 7-1. H!ere, J(k) satisfies a T-property at k - 0, but

J(k) + J(0) as k + t-. To correct this difficulty, define a sharp T-property

as follows.

Definition (Sharp T-Property)

The function J(.): r + R satisfies a sharp T-property if there exist

klk2 r and TO > 0 such that

I I 0  J "> ( > >J(k
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J(k)

k

Figure 7-1. J(k) satisfies a T-property at k 0 but
J(k) + inf J(k) as k + ±+

kI RI

It is clear from this definition that any J(.) satisfying a sharp T-
property satisfies a T-property and that if

L k e r To}

L is a compact set and

inf J(k) > X1k) > J(k > inf 3(k)
k'L . . .. . kcL -

It is also clear that if J(.) is a semicoercive function, it satisfies a sharp
T-property. With these results, the following unconstrained optimization
theorem may be established.

Theorem 7-6 (Unconstrained Optimization)

Suppose r is a closed set in R and J(.): r + R is an lsc function sat-
isfying a sharp T-property on r. If Un (.)) is a family of lsc functions on r

that converges uniformly to J(.) on r, then the following conditions hold:

(1) All global infima of J (.) and J(.) are achieved on some compactn

set K, i.e., S, SC K.

(2) S + SCS as n +.n
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(3) 1iim J (k) lia (k*) J(k*)

n+co n -- n' n+co ---nt-

where k e S and k S.

Proof

(I) Since J(.) satisfies a sharp T-property on r, there exists some
compact set K such that

inf J(k) > inf J(k)
kIK - kcK

Further, since J(.) is isc on r, by Theorem 7-1 there is some set

S C K such that

k e S -> J(k*) = inf J(k) = inf J(k)
- keK ker

(2) Let

d inf J(k) - inf J(k) > 0
kK - keK -

Since Jn(.) n (') uniformly on r, there is some N such that if
n > Nn>N

IJn (k)- J(k)J < d/3 for all _k r

Thus, if k c K

J n(k) > J(k) - d/3

> inf J(k) - d/3
- kK -

> inf J(k) + 2d/3
- kcK -

J(k*) + 2d/3 for some k e S
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Simi tar ly

J (k) < J(k*) + d/3

I J> n (k*) < 3 (k) for any jk K

Thus

inf J (k) = inf J (k)
k r n - kcK n -

for all n > N.

Since Jn (C) is isc and K is compact, by Theorem 7-1, Sn exists

such that

k c S => J (k*) = inf J (k) inf J (k)
n n n-n keK n-- kcr n-

(3) Now, since S C K and S C K, K compact, Condition (1) of Theorem
n

7-4 is satisfied.

Since Jn (.) + A(.) uniformly on r, it follows from Lemma 7-3 that

Conditions (2) and (3) of Theorem 7-4 are satisfied also.

Consequently, it follows from Theorem 7-4 tha'"

* ^ S

S n+ SCSn

and that

lim Jn(k) lim J(k*) J(k*)
n+co n -n ii -

where k e S and k e S.
-n n -
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Since it was the difficulty of dealing directly with the cost function
J(.) that motivated the design procedure considered here originally, it is de-
sirable to have an optimality theorem that establishes the results of Theo--
rem 7-6 on the basis of the properties of the approximating functionals
{J (.)}. Because of the uniform convergence requirement imposed on the se-n

quence (J (.)), it is not too difficult to establish such a theorem, on then

basis of the following lemma.

Lemma 7-4

If J (.) is Isc on the closed set r fov all n and the sequence (0 (n)1n n

converges to J(X) uniformly on compact subsets of r, then J(.) is isc.

Proof

(1) To prove J(.) is lsc on r, it must be shown that given any k r r
and any E > 0, there exists n > 0 such that

k II- < n > J(k) > 3(k)

(2) To accomplish this, consider the set

K N {c riii I . 1

r rn~k I II~.,- ki < 1}

which is compact since r is closed.

(3) Thus, Jn(.) + J(.) uniformly on K so that there is some integer N

such that n > N 0> IJn(k) - J(k)I <E/3 for any k E K

(4) Since J (.) is isc on r, hence K, there is some 6 > 0 such thatn

< 6 => Y(k) >. -
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U^

(5) Thus, let n min (1,6) so that if ke 1 , Il-l n then

(kW > JI (k) - 3 (by (3))

>J _ N - 2E/3 (by (4))

> Jk) - (by (3))

0> X(.) is Isc on r. U

Combining the results of this lemma with those of Theorem 7-5 and the
definition of a semicoercive function yields the following optimality theorem.

Theorem 7-7

If the following conditions are met:

(1) r is a closed set.

(2) Jn 0) + J(") uniformly on compact subsets of r.

(3) Jn(k) > Jo(k) "or all k c r for some semicoercive function Jo(O).

(4) J 0) is lsc for all n.n

then

(5) All 9lobal infiima of Jn ) and J(. ) occur on some compact set K,
*

i.e., S S^C K.

(7) S + SC+ ;s Cn÷+
n

(8) lim J (k) lim J(k ) J(k where k e SS.
n+-o n. -0 -wS n

Proof

(1) By Lemma 1-4, since J n(.) + J(.) uniformly on compact subsets oi
nnr and J () is lsc on r, J(s) is lsc on r.
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(2) Since J() is semicoercive

lim J0(k)

tI1II11- I1 -_11

for some a > 0. In particular, there is some 8 > 0 such that Ik
> 0 -> J0( k) > at/2 i!•11

(3) Now, pick any k e r and let

so that if Ik > R' then

a(k) > 2 > > 2J•(o)

(4) Next, define K k {c rI H_ <'. and note that for any n

inf J (k) - inf J (k) > inf Jo(k) > 2J(4k)

Further, since J (o) + J(t)), there is some integer N such that

"n> "> In V - I) -< _ - < . q

Thus

inf J (k) > J (kO) > inf J (k)
kli K n -- kr n-

so that S C K for all n.
n
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(5) Similarly, since J(.) is lsc and K is compact, J(.) achieves its

glbbal infimum over K on some set S C K. Also, for any kt K

J(k) lim J (k) > 2J(k ) > J(k ) > inf J(k)
-n -n -- -o - ker

so that all global minima of J(-) occur on K.

(6) Consequently, Condition (5) is established, and Conditions (6) and
(7) follow from Theorem 7-6. U

7.5 Summary of Convergence Conditions

The results presented in this section, culminating in Theorem 7-7, pro-
vide sufficient conditions on the set r of admissible compensator designs and
the approximating costs {J (0)} to guarantee that the four fundamental ques-n
tions raised in the introduction have (approximately) afiirmative answers.
Specifically, these conditions guarantee the following results:

(1) A set S of optimal compensator designs for the distributed param-
eter plant P exists.

(2) For every n, a set S of optimal compensator designs for the fi-
n

n:te dimensional approximating plant P exists.
n

(3) The sequence (S of sets of optimal designs for the plants {Pn}
n n

converges to a set S of optimal designs for the distributed param-
eter plant P.

Several important points should be noted regarding these results. First
the assumption thnt the set r of admissible compensators is closed is essen-
tial. In particular, this requirement is imposed to avoid the possibility
that inf 3(k) exists but is not achieved on r. A simple illustration of this

ker
is tht following: minimize J(k) = -k over r = (-o),05. Here

inf J(k) 0
ker

even though J(k) > 0 for all k c r.
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This example ia unrealistic in certain respects, however, since it is to
be expected that the definition of r will somehow reflect a stabilizability
requirement and that JWk) will approach 4o as k approaches the boundary of r.
A more representative example is therefore the following: minimize

Jk k2 + over r {k = (kl,k 2 )I -= < kl,k 2  < 0}J2k k k1 k k2

Here, for any fixed kl, J(k) + +- as k2 + 0- and similarly for fixed k2 , J(k)

+ +- as k ÷ 0-. Further, this function is coercive, suggesting it should

achieve its infimum ý,,er r on some compact set C C r. Note, however, that for
any fixed k2

kln ,0) 2 2

when k i k Thus, the sequence {k i {(-1/n,-1/n)} yields the sequence of
1 2 In

2
costs {J(kON = (1/n ) which converges to 0 as n + 0. However, for any-k c r,

-n

J) > k > 0, inf J(k) - 0 is never achieved since the minimizing sequence
2_> 2 r -

((-I/n,-I/n)) converges to a limit outtmele ,'. Consequently, since the set A
of stabilizing compensators meeting any particular structural constraint is
usually an open set (correspond-_, to the fact that the root locus is continu-
ous), it is clear that r mvw- 'e taken as some closed subset of A. Physical-
ly, this corresponds to ' ,position of some minimum stability margin or
some other standard of t.:i: ability like that considered in Reference 7-9.
Another possibility wouo, ',c to restrict the optimization a priori by placing
explicit bounds on each component k. of the parameter vector k. Such a

restriction would further gdarantee that the set r is compact, which makes
the results of Theorem 7-5 directly applicable.

The uniform convergence requirement on the sequence {J (.)} is also ex-ntremely important, as illustrated by the example in Figure 7-2. Here, J*(k)÷

J(k) for all k c RI but k 2 and J(k I while k * 1/2nand0(k) - 0
n n n

for all n. Thus, the sequences {k and {J (kn)1 both converge to well
n n n

defined limits that are not k and J(k*), respectively.
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J(k)

1

I~ o o-k

-10 2 3

A i n(k )
34.
3"

2

1k
-101o 2 3

Figure 7-2.
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The requirement that J (.) be lsc for all n is not particularly restric-

tive. Specifically, in most practical compensator design problems, the cost
functionals are chosen to be differentiable so that gradient-derived necessary
conditions for optimality or gradient-based computational algorithms may be
used to compute the optimal compensator parameters. Consequently, Jn(.) will

normally be continuous and thus lsc.

Assuming all of these conditions are met, it is important to note that

they only guarantee the convergence of the sequence of sets {S into the set
n

S . If S consists of a unique optimal design k , then any sequence k n} of

elements of {S I is guaranteed to converge to k if the conditions of Theorems
n

7-5, 7-. or 7-7 are met. If, however, S contains more than one optimal de-

sign, then the limit of the sequence (S n need be only a subset of S . This
point is illustrated by the following example:

-k I k < -1
+I , -1 <k< 0

J(k) =
1 ' 0 < k< 1

l , k> I

I

-k 1 -k < -1
n

S+ k + , -1 < k < 0
J (k)

Yn-kI L k, 0>k< 1

1k-i--- , k>1
2n

Note that only IJn(k) - J(k)I < 1/n for all k c RI so J() + J(') uniformly

on R , but while J(k) exhibits minima at k , ±1, Jn (k) exhibito a unique

global minimum at k -l for all n. Thus, S * {n }, (-1,11, so that

S + C SS bul S^ S*.
n
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Finally, note that the convergence conditions developed here .are only
sufficient and not necessary. In fact, it would appear to be very difficult
to develop any necesary conditions for convergence, as the following example
illustrates.

Suppose J(k) -kl and take

Suppose l'e bi + ik 31 if nevedd
(n k) ifno

for some e > 0. Clearly both J(k) and J n(k) exhibit unique global minima at

k = 0 for which J(k)= J (k) = 0. Thus, k + k* and J (k ) + J(k*), but thenn n n
sequence of functions iJ n(.))} does not converge to anything anywhere except at
k = 0.

7.6 Conclusions

The results developed are general enough to apply to a wide variety of
fixed-form compensator design problems. Current efforts are aimed at special-
izing them to the optimal output feedback compensator design problem that
originally motivated these efforts. In particular, the following questions
are currently under active investigation.

(1) How can the conditions of Theorem 7-7 be interpreted physically?
It is possible that approximation results for strongly continuous
semigroups can be used to guarantee that these conditions are
satisfied for output feedback control of flexible structures,
subject to certain conditions on the inherent damping in the
structure.

(2) For problems in which the convergence conditions are met, what
factors influence the rate of convergence? This question is of
considerable practical importance because the rate of convergence
determines how many modes must be retained in a finite element
model of a structure to provide a reasonable basis for control
system design.
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SECTION 8

LARGE-ANGLE SPACECRAFT SLEWING MANEUVERS

8.1 Introduction

The problem of large-angle maneuvers for flexible spacecraft continues
to be of interest in the aerospace community. This section develops a num-,
ber of extensions to the work first reported in Reference 8-1. In particu-
lar, this section presents techniques for improving the optimal torque pro-
files by

(1) Allowing the solution process to determine the optimal terminal
boundary conditions for the maneuvers.

(2) Developing a control-rate penalty technique for producing smooth
control profiles.

Several example maneuvers are provided that demonstrate the practical appli-
cation and utility of the techniques developed herein.

This section is presented in five parts. Section 8.2 treats the dis-
tributed control problem and develops the techniques for handling slewing
maneuvers when the final angle for the maneuver is to be determined as part
of the solution. The results of Section 8.2 are appropriate for maneuvers
where the final angular rate, rather than the final orientation, is impor-
tant.

Section 8.3 treats the optimal distributed control problem and devel-
ops a control-rate penalty technique for smoothing the optimal control
torque profiles. The control designer gains the ability to specify the ter-
minal control state and control rates as a by-product of the control-rate
penalty technique. In addition, Section 8.3 combines the free final angle
problem of Section 8.2 with the control-rate penalty technique.

Section 8.4 develops techniques for solving a single-axis retargeting
maneuver for a rigid spacecraft. Computational algorithms are proposed for
handling systems modeled by nonlinear dynamics and time-varying weighting
matrices in the performance index.

Section 8.5 presents the results of a preliminary study of slewing ma-
neuvers for the ACOSS Model 2. All example maneuvers are presented in Sec-
tion 6.6.

8.2 Free Final Angle Optimal Slewing Maneuvers

The specific model considered (see Figure 8-1) consists of a rigid hub
with four identical elastic appendages attached symmetrically about the cen-
tral hub. A single-axis maneuver with the flexible members restricted to
displacements in the plane normal to the axis of rotation is the only case
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considered. Furthermore, the body (as a whole) is assumed to experience
only antisymmetric deformation modes (see Figure 8-2). The distributed con-
trol system for the vehicle consists of

(1) A single controller in the rigid part of the structure.

(2) Four appendage controllers, one assumed to be located halfway
along the span of each of the four elastic appendages.

U1
U3

U42

HUU

EI,

1U1, U2 ,.... U51 SET OF DISTRIBUTED CONTROL TORQUES

Figure 8-1. Undeformed structure.

The extension to the case of multiple controllers along each appendage is
straightforward; however, in Section 8.2 only the single appendage-
controller case is presented.

The formulas for large-angle maneuvers presented in this section are
developed in physical space, because the free final angle transversality
conditions are understood most easily in terms of physical coordinates.

8.2.1 Equations of Motion

For the vehicle shown in Figure 8-1, the equations of motion can be
obtained from Hamilton's extended principle [3-21, leading to

A * T o. aT * 4(I T 4nM .nv + Mo'' 20TM n u, + 4u2 (8-1)

- Eu2  (8-2)
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where

1 = M-M

Figure 8-2. Antisymmetric deformation.

8.2.2 State Space Formulation

Referring to Eq. (8-15) in Reference 8-3, the linear time-invariant

form of Eq. (8-1) and (8-2) follows as

+ K - Pu (8-3)

where

T

Ki

- K gnn
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4 24
0Ft:

=[e fT] T

U_ [uI u2]

S MT (positive definite)

K = MT (positive semidefinite)

Defining the state variable subsets as

E- = * E (8-4)

leads to the first-order differential equations

-M-IK- +M -1-Pu (8-5)-.1 -2 E2 -1-

LetingT T TLetting Z - [E_ _2I , the state space equation becomes

AE +Bu (8-b)

where

A

[M-1 K ]
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8.2.3 Fixed Time Free Final Angle Otimal Control Problem

8.2.3.1 Statement of Problem

The rotational dynamics of a flexible space vehicle, restricted to a
single-axis large-angle maneuver, are considered where the system dynamics
are governed by Eq. (8-6). The optimal control p.coblem is to find the
solution to Eq. (8-6) that minimizes the performance index

j -- El] dt (8-7)2 t+ Uu T ss'

and satisfies the specified terminal states, where W is the control
UU

weighting matrix and W is the state weighting matrix. The specified ter-Ss
minal states are given by

S, [0 [ T(t0)iT _ T(t (8-8)

f [6f *T(tf)]T

-f -r1(t f) - t (8-9)

where the constraint

n(tf) = (tf) =0

is imposed in Eq. (8-9). In addition, the final angle ef is not specified

since it is to be determined as part of the solution.

8.2.3.2 Derivation of the Necessary Conditions from Pontryalin's Principle

In preparing to use Pontryagin's necessary conditions, the Hamiltonian
functional

1,4 w .~( u + z W .) + AT(AE + BU) (8-10)

is introduced, where the A's are Lagrange multipliers (also known as costate
or adjoint variables). PFontryagin's principle requires, as a necessary
condition, that the A's satisfy costate differential equations derivable
from
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_- _H -WE -ATA (8-11)-- s ss-- --

and that the cont- ol torque u must be chosen at every instant so that the
Hamiltonian of Eq. (8-10) is-minimized; that is, for continuous u one
requires that

_H = 0 = W u+ BTA (8-12)
u -- uu-

from which the optimal torque is determined as a function of the costate
variables as

u -- W1 BTA (8-13)
uu -

Substituting Eq. (8-13) into Eq. (8-6) yields the state differential equa-
tion

S AE - BWI BTA (8-14)

Because the final angle is assumed to be free, the transversality
condition providing the natural boundary condition for the problem follows
as

-A(t f)6Ef 0 (8-15)

where A.t) is the costate vector in physical space and 6Z is the variation
7-f

of the physical space state at the final time. Since 0f is free and

f, nf, and if are specified, 6Ef in Eq. (8-15) can be written es

ýEf [66f 6nf T 66f 6 TiT = [66f__O 0 0T]o (8-16)

Upon introducing Eq. (8-16) into Eq. (8-15), the desired free final
angle transversality condition follows as

1 Id 66f = 0
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or

ot

A Ct ) = 0 (0-1?)

I f

since 66 is arbitrary, where

A- = A1  A2  "". A2 NIT (N n +)

and A i-notes the costate variable for the rigid-body rotation angle e.

Thus, Ai(tf), Of, r., and ýf provide the 2N final time boundary condi-

tions necessary for specifying the optimal control solution of Eq. (8-11)
and (8-14), when fixed-time free final angle maneuvers-are of interest.

8.2,3.3 Solution for the .Initial Costates

In Eq. (8-11) and (8-14), the initial boundary conditions for Z &re
completely known while for A they are unknown, and the final boundary condi-
tions for E and A are only partially known. Thus, the applicaticn of Pon-
tryagin's irinciile has led, as usual, to a two-point boundary-value problem
(TPBVP). To s'Ilve Eq. (8-11) and (8-14), the merged state vector is defined
as

[. I A'I)' (8-18)

from whiich it follows that

npx (8-19)

where

A -BW- 1 3T
uU

-W -ATas

constant coefficient , 'rix
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Since Q is constant, it is well known that Eq. (8-19) possesses the
solution

SI(t-t 0 )
X(t) = e X(t ) (8-20)

•(t-t 0 )

where e is the 4N x 4N exponential matrix.

SI(t-t0)

The solution for e 0 is obtained conveniently by a variety of
methods discussed in either Reference 8-3 or 8-4. Upon setting

iI (t-t0 )
e . 'D(tt 0)

and writing Eq. (8-20) in partitioned form, one obtains

F: (8-21)
L I

or equivalently

E (t E 1 .(0)

E1(t) EE "(0'')

121 E 2N E1.A 2N 2N

S • . . .

A2N(tf) 0 " (0)

2NIf 2NE2N AI2NA1 A 1A2N2N

A1t)AI!•. . 1A2N ¢1A1 •..C1A2N IO

A 2N(tf) 0A 2NE1 I A 2NE 2N 0 A2N A 1 " A2 NA2N A2 N(O)

(8-22)
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Observing that the known quantities in Eq. (8-22) are Z2(tf, 2N(tf),
Al(t,), and EI(O),..., 2 N(O) and carrying out the partitioned matrix multi-

plication to solve tor E2 (tf),...,2N (tf), AI(tf), the equation defining the

solution for A(U) follows as

IAJA(O) b- [BIE(O) (8-23)

where

I 2

tAJ •"

r 2NA I E 2N A 2N

21 2 A1A2Ný

z 2Nz1 • 2N E2N

AI1 E 1A2N

b. - [E2(t f E2N(tt) A I (t••f)IT

Equation (8-23) is in the standard form ior the linear algebraic equa-
tion Ax w b, which can be solved via Gaussian elimination for x to yield

A(2N). • >N2

The optimal control time histories are obtained upon integrating
Eq. (8-11) and (8-14) subject to Z(O) given by Eq. (8-8) and A(O) given by
Eq. (8-23). Equation (8-23) provides the initial costates in physical
coordinates. However, if the maneuver simulations are modeled in modal
coordinates, the following two transformations permit the use of the results
of this section.

First, the modal space state transition matrix, ý(tfO) is mapped to

physical space via the transformation
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0(tfo) = O(t fO)0-1 (8-24)

where

E 0 0 0

0 0 E 0 0

0ME00 0 ME 0

0 0 0 ME

L

ETM 0 0 0

0-1 0 ETM 0 0

0 0 ET 0

o 0 0 ET

The derivation for the transformation matrix, 0, can be found in either
Reference 8-5 or 8-6.

Second, introducing the required partitions of Eq. (8-24) into
Eq. (8-23) and solving for A(0), the modal space initial conditions are
obtained from the transformation equation

I 1~-1 ~(J(8-25)

where X(0) is the modal space initial costate. The optimal control time
histories for modal space are obtained upon integrating the modal space form
of Eq. (8-11) and (8-14) subject to the initial conditions provided by
Eq. (8-25).

Case 1 in Section 8.6 provides an example maneuver.
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8.3 Controt-Rate Penalty Technique for OptimalSlewing Maneuvers

introducing control-rate penalties into the performance index accom-
plishes two things. First, the jump discontinuities in the control time
history are pushed into the higher control time derivatives. In other
words, the control-rate penalties act like control smoothing penalties. A4
a result, the frequency content of the resulting control profile is signif-
icantly reduced; thus, the vehicle's higher frequency modes are excited only
mildly by the smoothed control profile.

Second, the use of control-rate penalties permits the control designer
to specify the terminal control state and control time derivatives. For
example, in many reasonable maneuvers, it is convenient to specify that the
slewing control system is turned off both initially and finally. Of course,
depending on particular mission objectives (as shown in the retargeting ma-
neuvers of Section 8.4), other terminal boundary condit.on3 for the control
system are possible. To fully appreciate the significant gain in perform-
ance chat the control-rate penalty technique permits, compare the example
maneuvers of Section 8.6 with the results presented in Section 8 of Refer-
ence 8-1.

The vehicle depicted in Figure 8-1 is assumed to be modeled for the
results of this section. Only the case of a single-axis maneuver is consid-
ered, where the elastic displacements occur in the plane normal to the axis
of rotation, and only antisymmetric modes are modeled (see Figure 8-2).

8.3.1 Problem Formulation

From Eq. (8-3), the equations of motion can be written as

eC + Ký - Pit (8-26)

As shown in Reference 8-1, Eq. (8-26) can be cast into state space form,
through transformation sequences ( + t + s) and (s1,2 + s), leading to

= -As + Bu (8-27)

The slewing maneuver problem is to find the solu 'on to Eq. (8-27) that
satisfies the terminal boundary conditions
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o [0, n~T(to)]T i - [60, 1T t ]T !!0 ) u(i)(to)

(8-28)

Lf= i. nT~ 1 [6f T(tf)]T ~ 4 ) - Ui)t

(8-29)

for i O,1,...,k-1, where

.R(tf) - ;(tf) M O

u()( 0 ) U u(i)(ti) = o

with

u(0)=u

uCi) u

UM --d (u)
dt

The optimal control problem is to seek the torque history u(t) that will
generate an optimal solution of Eq. (8-f7), initiating at Eq. (8-28) and
terminating at Eq. (8-29), that minimizes the performance index

tf k
S IM TW LS + T u(W)TWi+u(i)) dt (8-30)

0 -o i -o - (8 30

where Wss is a weighting matrix for the states, W0 0 is a weighting matrix

for the control, and W,:i for i = l,.,.,k are weighting matrices for the

control rates. With k equal to zero, the performance index penalizes only
the states and controls, and thus the control problem corresponds to a prob-
lem of minimum control energy, kinetic energy, and elastic potential ener-
gy. The solution for this problem was addressed in Reference 8-1. With k

77



greater than zero, the performance index penalizes the states, controls, and
time derivatives of the controls. The example maneuvers in Section 8.6 dem-
onstrate that including control-rate penalities leads to much smoother modal
amplitude and control torque time histories. Additional example maneuvers
can be found in Reference 8-6. The flexible-body response is improved
because the vehicle's flexural degrees of freedom are very sensitive to
discontinuities in the control time histories; hence, by using the formu-
lation in this section, the jump discontinuities in the control at t - 0 and
t = tf are moved to the higher control time derivatives, which improves

overall system performance.

8.3.2 Necessary Conditions for the Optimal Control ,Problem

Adjoining the equation of motion, Eq. (8-27), as a differential equa-
tion constraint to the performance index in Eq. (8-30), the augmented per-
formance index is given by

tf k (i)T T
J ' f T II+Y u W.. U()] + X Bu sJ dt

0 2- ss- - -.. .

(8-31)

where the X's are Lagrange multipliers. Using standard calculus of

variations techniques the tirst variation of 3 follows as

tf k
f• f 16sTw s + k MT ~z.. Mi T- ssw + 6u)W..u + 6XT(As + Bu -

0 i= - i- -- --

+ XT (A6s + B6u - 6•)J dt (8-37.)

Integrating the terms containing 6s and 6u M by parts for i 1 ,...,k leads
to

tf !t tf

- f XT6s dt - -XT6s + f fT6s dt (8-33)

0 0 0

and
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•" r •'•f-•m--• .. . •-,• .w• --.. J.. ....- ..- j .. u.•-. ,•' -•, ", •

tf i j-lsu(i_•),W .u(i+j-1) f

0 0 z ~ z

ti

f T (2i)+ (-1)1 f 6u W. .u dt (8-34)
0 -

since s and u M (for i - 0,1,...,k-1) are specified both initially and
finaliy in Eiq. (8-28), the terminal variational terms in Eq. (8-33) and
(8-34) are

6s(tO) 0 _s(t ) f 0

6u (i-J) (t 0) 6 1u(i-J)(t f o Q

(8-35)

where to 0. Substituting Eq. (8-33), (8-34), and (8-35) into Eq. (8-32)

yields

A, f k[[(_~w (20) ,T . , ]"" f I2i).u + BTj 6u + [Wso + X+

0 i "O 1 1 ..

÷. + �-� �4 -it (8-36)

Since Pontryagin's principle requires the first variation of J to be
zero, the necessary conditions follow as

a As + Bu (8-37)

S -W - ATx (8-38)
se -

:k < 20 T
(-I)ki u -B (8-39)
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In order to cast Eq. (8-39) into the standard space form, the control

state is defined as

T T ]T (840)[uT u12 ... U2k (-0

where

u = Q-) (i= 1,2,...,2k)

and u. is an N x I vector for i = 1,2,...,2k, U is a 2kN x I vector, and--i c -- c
Nc denotes the number of independent controls. Referring to Eq. (6-40),

Eq. (8-39) can be written as

U CU + DX (8-41)

where

0 1
C21 C22

= (_1)k+1 w- Iw21 kk0oo

0 (-1)k2 o" w[ 0 -w 0 ... " 0 0 (-) 0 k j:o1
22kk 11i 22 . k-1,k-1

and

where 0* is a (2k - O)N x 2N null matrix
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Defining the E matrix as follows

("T
E [B ( ] (8-42)

and substituting Eq. (8-40) and (8-42) into Eq. (8-37), the state, costate,
and control differential equations follow as

State equations

s As + EU (8-43)

Costate equations

S -W s- - ATX (8-44)

Control equations

U CU + DX (8-45)

8.3.3 Solution for the Initial Costates and Control Time Derivatives

In Eq. (8-43), (8-44), and (8-45), the boundary conditious for s are
known both initially and finally. Those for U are split so that half are
known at the initial time and half are known at the final time. Those for ,
are totally unknown. Thus, application of Pontryagin's principle has led to
a TPBVP. To obtain the solution for Eq. (8-43), (8-44), and (8-45), the
merged state vector is written as

X T XT UTT (8-46)

from which it follows that

S zx (8-47)
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where

A 0 E

$1 -W -AT 0 constant coefficient matrix88

0 D C

Since a is constant, it is well known that Eq. (8-43) possesses the solution

sg(t-t 0 )

X(t) - e X(t 0 ) (8-48)

where e t is the (4N + 2kNc) x (4N + 2kN c) exponential matrix which is ef-

ficiently obtained from a Pade series expansion. Upon setting
fl(t-tO)

e 0 4(tt 0 ) and writing out Eq. (8-48) in pnrtitioned form, one finds

Bs(tf) -ss OS s(O)
a sub i (o)

X(tf) €Xs h u Xu b X(O)

a btý 0•a(tf) uUS 4a U ~ 4ab I(0)

a fa ua X ua ua ýua b a

Ub (t f) ýUbS Ubb X UbUa 'bUb 2b(0)

-4

(8-49)

where

ua R -a2 ...

" [M -T2 T
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where u is known both initially and finally and is unknown both ini-
tially and finally.

Observing in Eq. (8-49) that the known quantities are s(0), i(tf),
u (0), and u (t f) and carrying out the partitioned matrix multiplication,

solving for s(t ) and u (t f), one obtains

(t f) ý ýsu S(0) osx ýsu L(0)
a b

ua(t ft :u: ] 1u 3 u a +(0) L uaui }(0)

(8-50)

Setting u (0) .u a(t ) f 0 (i.e., turning the control system off initially
and finally) in Eq. (8-50) (see Eq. (8-28) and (8-29)) and solving Eq. (8-50)
for -(O) and _%(O), one finds

OBX 0su b !(0)• if - 0 s..sSO)

su]=S~ {f-s()(8-51)*u X Uab -(0" us(0•

Equation .8-51) is in the standard form for the linear algebraic equation
Ax - b, %Aich can be solved via Gaussian elimination for x, to yield X(o)
a7nd u(0). The optimal control time histories are obtained by integrating
Eq. (8-43), (8-44), and (8-45) subject to the given state and controlboundary conditions s(C) and u (0) and the costate and control rate bound-

ary conditions provided by Eq. (8-51). Cases 2 and 3 in Section 8.6 present
example maneuvers using the formulations of this section.

8.3.4 Free Final Angle Maneuvers with Control-Rate Penalties Included

Since the analytical developmercs for solving the problem of free
final angle maneuvers are similar to those shown in Section 8.2, only key
equations are given.
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As shown in Section 8.2, the boundary condition for the free final
angle corresponds to setting the final value of the costate for the
rigid-body angle to zero (see Eq. (8-15) and (8-16)). As a result, the set
of prescribed boundary conditions follow as

*a= [en T(to)IT [0 [O t0(t •u --T_(t 0)

(8-52)

= n•t ) -f = ([of T(tf)]T u ut)
- f--ul af

(8-53)

and

AI(tf) 0 (8-54)

where we impose the requirements tLat r(t ) f 1(t) f 0 in Eq. (8-53) and

u (to) 0 .ua(tf) = 0 in Eq. (8-52) and (8-53).

Using the performance index of Eq. (8-31) and formulating the solution
in physical spece, the state, costate, and control differential equations
follow as:

State equation

- AE +E A (8-55)

Costate equation

W -W Z- ATA (1-56)
-- 88-" -

Control,equation

U CU + DA (8-57)
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where

[,T T1• T

Writing the merged state vector as

X_ [fT AT ZIT (8-S8)

the solution for Eq. (8-55), (8-56), and (8-57) can be written as

•(t-tO)

X(t) = e X(t 0 ) (8-59)

S(t-t )

where P is defined in Eq. (8-47). Setting e 0 ý(t,t 0 ) and performing

th partitioned matrix multiplication, solving for E2 (tf),..., 2N(tf),

A (t ) in Eq. (8-59), the linear equation to be solved for AO) and-u (O)
1if -b

follows as

[Ala - b- [B]c (1-60)

where

CE2AI E 2 A 2N E 2 u b 2 Ub

E 2N1 A I L 2N A2N E 2NUb1  2NUb

AI AA %AIA Aub11 -" 12 lb. lb""
,t V

u au u bal a2N abl

ua ,A1  " . a A u u bu u
8ba b
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21 2 2N

2NE I E 2N 2N
AB AI EI A I F ,I2N

ual u a ua2N

L a u a a2N

SV

-- A 1 [(0) ... A 2N-1I(0) A 2N (0) U b 1(0) .. bv(0)IT

b [ t) ... E2(tf) A (t ) u t) ... U (t f)
- f 2N' 1 f a 1  f a f

S= [El1() ... E2N-1 (0) E2 N(O) U a(0) ...*Ua (0)]T

v = kNc

Eq. (8-60) is in the standard form for the linear algebraic equation
Ax b, which can be solved via Gaussian elimination for x, yielding A(O)
a-nd •(0).

The optimal control time histories are obtained upon integrating
Eq. (8-55), (8-56), and (8-57) subject to E(O), ua(0) given by Eq. (8-52)

and A(O), _%(O) given by Eq. (8-60).

Eq. (8-60) provides the initial costate and control rates in terms of
physical space coordinates. However, if the maneuver simulations are
modeled in terms of modal space coordinates, the following two transforma-
tions permit the use of the results of this section. First, the modal space

86



state transition matrix, *(tf,O), is mapped to physical space via the trans-

format ion

0tf,0) = 0(tfO)O- (8-61)

where

E 0 0 0 0 0

0 E 0 0 0 0
0 0 ME 0 0 0

0 0 0 ME 0 0

0 0 0 0 I 0
0 0 0 0 0 I

ETM 0 0 0 0 0

0 ETM 0 0 0 0

-1 0 ET 0 0 0
0 0 0 E T 0 0

0 0 0 0 I 0

0 0 0 0 0 I

Second, introducing the required partitions of Eq. (8-61) into
En. (8-60) and solving for AM() and (0), the modal space initial condi-

Lions are obtained from the transformation

s(0) E(0)

X(0) AMO)

u (00) (0) (8-62)

(0) %(0)

The modal space optimal control time histories are obtained upon inte-
grating the modal space form of Eq. (8-55), (8-56), and (8-57' subject to
the initial conditions provided by Eq. (8-62). Case 4 in Section 8.6 pro-
vides an example maneuver using the formulations of this section.
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8.3.5 Selection Technique, for Weighting Matrices W and W.. in the

Control-Rate Penalty Formulation

It has been found that the particular choice of weighting matrices
significantly affects the computational effort and resulting maneuvers. A
brief study of the effects has been performed.

In the example maneuvers of Section 8.6, the following block diagonal
forms of the weighting mntrices have been used

F0o2 0
W w (2N x 2N)

SS 8S

W.. = w. I NxN)

where w , w.,. are scalar quantities and p is defined in the text that

ss ss

follows.

Since the problem being solved is a slewing maneuver, the rigid bodyangular displacement is not penalized. Hence, the first element of W is

s8
set two orders of magnitude less than the other diagonal elements. The
first element of W is not set to zero because this causes repeated .zero

.85

eigenvalues in S of Eq. (8-47), which can potentially lead to numerical
diffuclties in calculating the state transition matrix.

The value of P in W.. determines the participation of each set of

independent controllers in the slewing maneuver. Since it is desirable to
have the rigid-body torque execute most of the slewing maneuver while the
appendage torques function mainly as vibration controllers, p is set to 2 or
3 to provide a svmaller pernalty oAi the rigid-body torque.

In a preliminary parametric study, it has been found that by adjusting
tne norms of the weighting matrices Was, W0 0 , and W.. (for i - I,...,k-1) to

several orders of magnitude smaller than the norm of.Wk, the eigenvalue

bandwidth of Q in Eq. (8-47) can be reduced significantly; thus, the sensi-
tivity of the optimal control problem decreases. However, the decrease in
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eigenvalue bandwidth of R is obtained at the expense of increased peak flex-
ural deformations during the maneuver, thuugh the time" histories of the
modal amplitudes are considerably smoother. An asse.-,-mnt of the impact
this weighting matrix scheme has on the unmodeled devgries of freedom is a
topic of further interest.

8.4 Single Axis Retargeting Maneuvers for a Rigid k cecraft

The problem addressed in this section is a s"a-,le-axis maneuver of a
rigid spacecraft which is slewing to engage a mov'•t, target. The retarget-
ing maneuver is complicated by the fact that the i, Ilowing, parameters and
boundary conditions are unknown:

(1) The maneuver time, (t - to)
f 0

(2) The final engagement angle, f*

(3) The final engagement angular rate,

C1

(4) The final control torque, uf.

(5) The final c.ntrol torque e uf.

The performance index selected for the nptimal control problem repre-
sents a tradeoff between elapsed maneuver time, state, and control-rate
penalties. A rigid spacecraft model is used instead of a flexible vehicle
to simplify the cal-alations and provide useful insight for solving the
flexible body case. In the development& that follow, the target trajectory
is assumed to be known. Since work on teis topic is preliminary, only the
solution strategy is presented,

The solution procedure consists of the following three steps. First,
the linearized free final time problem is solved. Second, the nonlinear
solution is obtained using the final time and initial costates from the
first step as initial iteratives. Third, a grid search is performed in time
to find the final time that minimizes the performance index for the non-
linear problem.

The target trajectory is assumed to be

0(t,tO) u tan- (YO + V(t to)) (8-63)
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which represents a linear flyby target motion, where x0 , Y0 9 and V are

constants that correspond to the target's initial position and velocity (see,
Figure 8-3).

Y

CONSTANT TARGET
VELOCITY AND
DIRECTION

INITIAL TARGET
-• POSITION (xO, yo)

o •' INITIAL TARGET ANGLE

0

Figure 8-3. Model of a linear flyby target motion.

8.4.1 Solution for the Linearized Free Final Time Problem

The solution of the linearized problem provides estimates of the op-
timal final time, initial costates, and control time derivatives for the
nonlinear solution.

The state space form of the equation of motion for the linear problem
is given by

(8-64)
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where sI is the angular displacement, s2 is the angular velocity, u is the

control torque, and I is the moment of i-ertia of the vehicle. The optimal
control problem is to seek the solution to Eq. (8-64) that

(1) Minimizes the performance index

tf

J f [ + Wu2 + W 2 dt (8-65)
0 0

where a is a weight penalizing elapsed time, and W0 0, W11, W2 2

are scalar weights on the control, first, and second control
time derivatives, respectively.

(2) Satisifies the terminal constraints

s (tO) s s 2 (tO) = s2 (8-66)
100

u(t 0 ) 0 u(tO) 0 0 (8-67)

Sl(tf) = O(tf~tO) s 2 (tf) 6 O(tftO) (8-68)

u(tf) = I6(tftO) u(t ) u I•(tt) (8-69)
f ~ of ftO

where

tf free (8-70)

and e(t,t 0 ) is the angular target motion given by Eq. (8-63).

The final boundary conditions given by Eq. (8-69) are imposed itt order

to establish a terminal torque and torque rate that will allow accurate
pointing and tracking of the target at the end of the maneuvet. The target

motion in terms of 0(t,to), 6(t,to), 9(t,to), and '6(t,tO) is assumed to be

available from some estimation process, for practical applications.

Application of Pontryagin's printiple leads to the following necessary

conditions
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S =s (8-71)

2= u/I (8-72)

=0 (8-73)

i2 =-XI (8-74)

W 0U -W W 1 + W22" -X2 (8-75)

On imposing the terminal constraints listed in Eq. (8-68) and (8-69), the
transversality conditions governing the optimal maneuver follow as

GI -x 1-(tf)5(tf,t0) - X2 (tf)O(tf~t0) + x I(tf)s2 (tf) + %2 (tf)u(tf)/I + a

+ I W0ou 2 (tf) + L W1 1  +w2 (t u +tf) .20 (8-76)

G2 = $I.(tf) - 6(tf~to) . 0 (8-77)

G 3  =- s 2(f)- 6(tf't 0 ) = 0 (8-78)

4 u(tf)- I'(tf,to) 0 (8-79)

(5 u(tf) -- I0(tfltO) = 0 (8-80)

To cast Eq. .(8-75) into state space form, the control state is definoid
as

[u, u2  u3  u 4 ]SR [u i 1, ' (8-81)
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Subject to Eq. (8-81), Eq. (8-71) to (8-75) can be written in the merged
state vector form

k = •(8-82)

where

x = [s1  s2 x1 X2  uI u2  u3 u4

and

0 1 0 0 0 0 01 0

0 0 0 0 T 0 0 0

0 0 0 0 0 0 0 0
0 0 -1 0 0 0 0 0

A = 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1.

0 0 1. . .. 0 0 wo 0
IW22 W22 W22

Since A is ccnstant, it is well known that Eq. (8-82) possesses the
solution

x(t) = e Att0)X(tO) (8-83)

where

A(tf-t0)
e is the exponential matrix

Setting

A(tf-t0)
e - (tftO)
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introducing the appropriate partitions of *(tfjtO) into Eqý (8-50) and re-

arranging, the linear system defining the solution for Xl(t 0 Y, X2 (t0 ),

u3 (t 0 and u4(tO) follows as

•1b X(0) s(tf) S(0)

L~~: ~ Oj -b u~() (8-84)

where

•_:[sI s5 ]

x " [•'I x']T

ui [u T u

. [bu3  u4 ]T

The optimal control time histories follow on integrating Eq. (8-82) subject
to s(0) and u1(0) given by Eq. (8-66) and (8-67) and X(0) and U(0) given

by Eq. (8-84).

Due to the nonlinear character of the transversality conditions, the
necessary equations are solved by iteration. Starting iteratives for the
transversality conditions are obtained by assuming that the final time is
known. As a result, a number of final time grid points are selected. At
each final time grid point, the optimal control solution is obtained
subject to satisfying the transversality conditions of Eq. (8-77) through
(8-80), and the performance index is computed. Once a minimum is found for
the performance index within three consecutive final time grid points, the

performance index is modeled by Jk(t k C + C tk + C (tk)2 where J de-
n~~tes fh at lefrac fns 2n f k

kth performance indx and t denotes the kth final time grid

point. Upon solving for CO, CI, and C2 , the starting iterative for tf is

obtained by setting the derivative of J k(t) equal to zero, yielding
t f M -C I/2C 2.

Integrating Eq. (8-82) and 3ubstituting the final states, costates,
and control states into Eq. (8-76) to (8-80) provides the errors in
satisfying the necessary conditions. The corrections to the initial
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costates, control time derivatives, and final time are obtained from the
following equation

C G2

-[gii] AC3 = G (-85)

AC4 G(4

where

.. ••[C I c 2 C 3 C 4 C 5] = Ylt0) '2(t0) u 3(t 0) U4(t 0 r-f]

•! •Gi
= . i,j = 1,...,5

and the desired corrections are denoted by

AC for i = 1,...,5

Using the updated final time, the terminal errors for Eq. (8-76) through
(8-80) are computed on integrating Eq. (8-82), and if necessary, the process
is repeated until the final time converges.

8.4.2 Retargeting Maneuvers with Nonlinear System Dynamics

A retargeting maneuver is considered where the system dynamics are
nonlinear (this example is similar to the nonlinear rtexible problem shown
in Reference 8-1) and time-varying weights are included in the performance
index. Specifically, the equation rf motion is assumed to be given by

2• K 2 (8-86)
2 u s 2

and the new performance index follows as
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f- [a + 1 2 + W 2 .2 1 (t)(S - )2
200 2O W11 2 -W22" T

+ W (t)(s2 - d)2 ]dt (8-87)

whe're

W = C (ert - 1), 0(0) 0 2 (et 1)

and C1, C2) r, and are constants.

The performance index now includes time-varying penalties on the dif-
ferences in angular displacement and angular velocity between the spacecraft
;rid the target.

The problem is solved as a fixed final time maneuver using the optimal
final time found in the free final time problem in Section 8.4.1. The non-
linear solution is obtained by introducing a relaxation process (see Refer-
ence 3-1, Section 8.6), where the nonlinearities are introduced slowly into
the liuear solution obtained in Section 8.4.1.

Application of Pontryagin's principle now results in the following
necessary conditions

s2 (8-88),

u 2 (8-S9)
s2 1 Y-'"s2 (-9

= -Y(t)(sl - 0) (8-90)

'2  = -B)(s2 - - Al - 2X2  ) (8-91)
2 2  1~ 2 (K 0 2

W00  - wii 22 (8-92)
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The terminal boundary conditions listed in Eq. (8-,66) through (8-69)
are assumed for this problem, and the initial estimates for X(O) and u b(0)

are given by Eq. %8-84),. Written in merged state vector form, Eq. (8?-88)
through (8-92) become

=Ax + ab (8-93)

where

0

2-I2/
0- )

b _(t)(s2 - •) - X(Ts

0

0

0

and k is the k relaxation parameter, where the sequence of parameters

,too = 0 < o, < ... < a r-1 < a r =i 1 has been introduced and r is preset.

The solut-,n for Eq. (8-93) is refined iteratively using the fol-lowing equa-
t ion

[ ] 2AxfD -x (8-94)

where

AfD is the desired final state vector

2ifI is the integrated final state vector

[T•/a2]T is the state ::ransition matrix

Atx is the corre,.tion vector
-0
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Assuming that [3 I ST] in Eq. (8-94) can be expressed in the form

T

If = (tft0)Q(tft0) (8-95)

where ý(tflt0) is the state transition matrix for the linear time-invariant
part of the problem, and Q(t ft ) is the state transition matrix for the

nonlinear part of the problem, it caa be shown using Lagrange's variation
of parameters method that Q(tft 0) satisfies the equation

Q(tf~0 =I+k -(T't0) • _r '(~o rt0o dr
t 0

(8-96)

where the relaxation parameter, ak, has been introduced artificially. Ob-

serving that Eq. (8-96) is an integral equation for Q(t,t 0 ), and using the

method of successive substitutions, one finds the following equation

tf -1 (T)])

Q(tftO) I + a f t -L (r,tO) _ (,to) d¶ (8-97)

where the higher order terms in ok have been assumed to be small.

The solution procedure is summarized as follows. First, the relaxa-
tion parameters ak are chosen such that {oo0 "'" < r

Second, the initial costates and control time derivatives for the linear
solution are used as initial conditions for the integration of Eq. (8-93)
with k 1 1 and Eq. (8-97). The final states and controls are compared with
the desired values at the final time, and if the terminal etrors exceed a
prescribed tolerance, then corrections to the initial costates and control
time derivatives are calculated from Eq.(8-94), (8-95), and :3-97). The
integrations and corrections are repeated until the norm of the terminal
error vector is sufficiently small. The index on the relaxation parameter
is increased, and the iteration process continues until the solution for
ar 1 is found. The solution for ar - 1 yields the desired nonlinear
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solution. It is anticipated that Eq. (8-97) will lead to significant compu-

tational saving3 when [3bT(T)/3X] is sparse.

The optimal final time for the nonlinear solution is obtained by a
grid search for the final time that minimizes the performance index of
Eq. (8-87). That is, a series of nonlinear solutions and performance
indices are calculated for different final times. A quadratic fit is then
performed to estimate the final time that minimizes the performance index.

8.5 Preliminary Study of SlewinManeuvers for the ACOSS Model 2

Several single-axis slewing, maneuvers have been computed for a modi-
fied version of the ACOSS Model 2. The modifications, which simplify the
calculations, include:

(1) Locked isolator springs.

(2) A symmetric mass distribution for the vehicle about its center
of mass.

The "rigid-body" torque is applied in the z direction at the center of the
equipment section (node 44). The formulation of Section 8.3 is used with
k - 2 in Eq. (8-30) for the performance index. The mass, stiffness, and
actuation matrices are computed by the Dynamic Interaction Simulation of
Controls and Structures program (DISCOS) which uses NASTRAN finite-element
data.

The solution procedure is as follows. A number of modes to be con-
trolled is chosen. The optimal control time history is computed, using the
formulation of Section 8.3 and the mass, stiffness, and actuation matrices
from DISCOS. The control time history is then input to DISCOS which simu-
lates the maneuver and treats all nonlinear kinematic effects.

Results from the DISCOS simulations show that the uncontroilld eyi-
metric modes have small vibrations. Though the controlled antisymmetric
modes have larger peak amplitudes, the resuits show that the modal ampli-
tudes are zero at and beyond the final time of the maneuvers, which is the

expected response. An example maneuver is shown in Section 8.6, Case 5.

8.6 Example Maneuvers

This section presents example maneuvers fc.r the formulations discussed
in Sections 8.2 through 8.5. For Cases I to 4, the geometry of Figure 8-1
is assumed with the following configuration parameters: the moment of

inertia of the undeformed structure, I, is 7000 kg-m 2; the mass per unit
length of the four identical elastic appendages, p, is 0.004 kg/m; the
length of each canLilevered appendage, L, is 150 m; the flexural rigidity of

the appendages, El, is 1500 kg-m3/ s2 ; and the radius of the rigid hub, r, is
I m. In the integrations over the mass stiffness distributions, the radius
of the hub is not neglected in comparison to the appendage length. The fol-
lowing comparison functions are used as assumed modes
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-pit(x -r) + IXp(x- r) 2
p((x -r) = I-cos L +. (.. )P+l
p L 2 i

p = ,2.

which satisfy the geometric and physical boundary conditions

4,11 = x4r"J = 4,"' xIr~ = 0
lx=r x0 r PIxr+L xrr+l

of a clamped-free appendage. For Case 5, the ACOSS Model 2 is used where
the isolation springs are locked and the mass distribution has been modi-
fied.

In Cases 1 to 4, all the W matrices are set to diagonal matrices in

physical space, and then mapped into modal space using

1ss modal Ej [] W physical L ]i

For Case 5, the W matrix is set to a diagonal matrix in modal space. Re-ss
ferriag to Table 8-1 and Figures 8-4 to 8-14, the ý.xample maneuvers are
described as follows.

8.6.1 Case 1 (Figure 8-4)

Case 1 is a 60-second free final angle rotation reversal maneuver
using the formulation of Section 8.2. The structure returns to its original
angular position at the end of the maneuver. The modal amplitudes are nega-
tive and the control torques are positive throughout the maneuver. In addi-
tion, the control torques have jump discontinuities at the initial and final
time.

8.6.2 Cases 2 and 3 (Figures 8-5 through_8-7)

Cases 2 and 3 are 60-second rest-to-rest maneuvers using the formula-
tion of Section 8.3. The states, controls, and control rates are included
in the performance inden for Case 2, whilk the second and third time deriva-
tives of the controls are included additionally for Case 3. For both cases,
the control torques at the initial and final times are all zero; therefore,
they are continuous at those points. The slope of the maneuver angle veraus
time plots are very small at the initial and final times which is consistpnt
with a smooth modal amplitude history. Case 3 differs from Case 2 in thatthere is a 30-to-i reduction in the first mode peak amplitude, a 2-to-i re-
duction in the second mode peak amplitude, and a 20-to-i reduction in the
peak tip deflection. On the other hand, Case 3 shows a i-to-1.3 increase in
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Table 8-1. Parameters used in test case maneuvers.

Case No. of No. of
No. Modes Controls 0 0 f f W W W

Controlled (rad) (rad) (rad) (rad) s 00 Wi1  W2 2  3

1 2 5 0 -0 .5 free 0 .5 10-2 1 ... ... ...

2 2 5 0 0 0 10-31 10-1 ... ...

3 2 5 0 0 71 0 10-3i 10-91110-91 10-I._

4 2 5 0 -0.5 free 0.5 10-3i 10 -91101- I

5 2 1 0 0 r /36 0 10-7 i I 0-4 I ---

-2
I is an identity matrix with the first element set to 10 , setting a lower
weight on the maneuver angle.

-3
I is an identity matrix with the first element set to 10-, setting a lower
weight on the rigid-body control or control time derivative.

the rigid-body peak torque requirement and a 1-to-8.4 increase in the
elastic appendage peak torque requirement when compared with C~se 2. The
slopes of the control time history plots for Case 3 are zero at the initial
and final times because of the higher order time derivatives in the perform-
ance index.

8.6.3 Case 4 (Figures 8-8 and 8-9)

Case 4 is a 60-second, free final angle, rotation reversal maneuver
using the formulation of Section 8.3.4 with the performance index penalizing
the states, controls, and the first and second time derivatives of the con-
trols. Compared with Case 1, Case 4 shows a 19-to-i reduction in the first
mode peak amplitude and a 2-to-I reduction in the second mode peak ampli-
tude. The rigid-body peak torque, on the other hand, increases by a i-to-
1.3 ratio and the appendage peak torque by a I-to-i3 ratio. The initial and
final control torques are zero, and therefore continuous, while in Case I
they are discontinuous at the initial and final times. The modal amplitude
and control torque histories are much smoother in Case 4 than in Case 1.
From these results, it can be concluded that the inclusion of ccntrol-rate
penalties in the performance index produces torque and modal amplitude time
histories which are much smoother than those produced by the formulation
without the control-rate penalty.
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8.6.4 Case 5 (Figures 8-10 through 8-14)

Case 5 is a 5-second, 5-degree, rest-to-rest maneuver of the ACOSS
Model 2 about the z axis. The maneuver is simulated for 7 seconds in order
to observe the residual vibrations. The formulation of Section 8.3 is used
with the performance index penalizing the state, control, and first and
second time derivatives of the control. The first two antisymmetric modes,
Modes 10 and 11, are controlled with the others uncontrolled. The results
show that the syometric modes are only slightly excited. Mode 7, which is a
vibration in the x-z plane, and Mode 8, which is a symmetric vibration in
the x-y plane, are excited only slightly. Modes 9, 12, and 18, which are
mainly vibrations in the x-z plane with some aatisymmetric components on the
x-y plane, are excited somewhat more than Modes 7 and 8 because of the
antisymmetri, component.

Modes 12 and 18 have small amplitude residual ringing at the end of
the maneuver, but Mode 9 has a relatively large amplitude at the terminal
time. Modes 10 and 11, which are the controlled antisymmetric modes, are
excited but are forced to have essentially zero amplitude at the end of the
maneuver, as expected. Mode 15, which is a twisting of the solar panels, is
hardly excited. Mode 17, which is purely antisymmetric in the x-y plane, is
excited, but the amplitude is greatly reduced at the terminal time with
small amplitude residual ringing. The large residual amplitude of Mode 9
suggests that it should be controlled in future simulations.
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SECTION 9

ORDER REDUCTION BY IDENTIFICATION--
SOME ANALYTICAL RESULTS

9.1 Introduction

Considerable attention in the community studying large space structures
(LSS) has been dejoted to the design of (stable) controllers. The major dif-
ficulties encountered are the dimensionality problem and the spillover prob-
lem. Various devices have been suggested to overcome these difficulties.
Roughly speaking, the common philosophy of all the designs is: select n domi-
nant modes (n relatively small), design a controller for the n modes while
preventing (or minimizing) the spillover effect. Although this is a plausible
philosophy, it suffers from a major flaw: the success of the corresponding
design depends on knowledge of a precise high-order model. Thus, the burden
of dealing with a high-order model is transformed from a control design prob-
lem to a modeling problem. Unfortunately, the identification of high-order
models is even miore imperilltd with numerical difficulties than controlling
such systems. Thus, it seems that a compromise between these difficulties is
imminent. Actually, such a compromise is practiced regularly by en&ineers as
follows:

(1) A model structure is selected (e.g., linear of order n).

(2) Using experimental data, the best model of the selected structure

is estimated.

(3) A controller is designed for the "best model".

(4) The performance of the controller when applied to the plant is
tested.

Although a common practice, no proof exists that such a scheme will work, ex-
cept for Step (4). The purpose of this section is to evaluate the feasibility
of this approach theoretically. Specifically, an attempt is made to zharac-
terize control designs that will guarantee stability despite the order reduc-
tion induced by the identification. Since the least squares (LS) method is
one of the more robust identification schemes, and since analytical expres-
sions for order reduction exist for the LS, this method is analyzed herein.

Section 9.2 discusses general properties of LS identification, espe-
cially those pertaining to order reduction. A general stability theorem for
the discrete-time system and its relation to LS is presented subsequently.

Sections 9.3 and 9.4 characterize controllers which are stable when de-
signed based on reduced-order models. It is shown that stability enhancing
controilers (i.e., controllers which increase damping) are robust when applied
to systems with reduced-order models. In the last section conclusions are
drawn and extensions are outlined.
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Nomenclature

All vectors are denoted by underlined lower case letters, e.g., x, a n
n

a.

.th
The j entry of x is x..

Matrices and operators are denoted by capital letters, e.g., Pn, X, E, J

The dimensions of the matrices (operators) are not specified if they can

be deduced from the context.

9.2 Least-Squares Identification

To facilitate the analysis of the subsequent section, we present first

some basic results in LS theory.

Let {Ox 1 ,...} be a set of vectors in a Hilbert space H.

Let

Ln A Span 1 ...

and

"n A A10 P Px0 projection of x on Ln (9-1)

n ^
n

- 7a.a.x.
i= 1 --

Then the following results:

Result 9-1

^+l n ^l.n+l
. = a x. (9-2)
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n+1 n n+,

a i a. - an+1 a n+l,i .,n (9-3)

where

n

Pnýn+l i n+1,--i
""n+nlA

and where an+l xn is the projection of x on x -- +l x P x

Result 9-1 is best illustrated as shown in Figure 9-1.

^n+1 --

n+1 n+

^n+1xo
n¢I

n

Figure 9-1.

The algebraic relations which correspond to Result 9-1 can be expressed
as follows

PA X Xn(XTXn )lxTx (9-4)
n n nn n;O
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where

X is the matrix

n --

and tOle bupersLript T denoteb the transpose operation. Defining the vector

Fnla1

^II
.n

aa n I

and the truncation operator E

Ex E

n 1-I

we have

n+l = +n+ )-1 -TEa~nl a aln+1 (XTXn- x x +1 (9-6)

The application of Eq. (9-5) and (9-6) results in the system identi-
fication theory as follows. Let

n m

y(k) - aiy(k- i) + I b u(k- 1) + w(k) (9-7)i=I i=o

be an (n,m) ARIMA model to be identified, where {y0), (uOl, and (wo(I are
output, input, and noise (residuals) sequences, respectively. Define
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-y(n - 1
•ii i-O,...,n

y(N- i)

u(2n + 1 - i)

• (N +-n + 1 - 01 1 w n + 1,,,,,n + m

where N is the length of the data.

The LS estimate of the (n,m) ARIMA model can be transformed to the
(n + 1,m) or the (n,m + 1) order ARIMA modtel using the relations above.

Assuming that the number of unstable poles is known and choosing n
larger than that number, it can be shown [9-1] that the unstable modes can be
identified exactly using the LS algorithm. Thus, in the sequel, only the ef-
fect of order reduction oa stationary (stable) systems is considered.

In the stationary case, assume that N is large enough such that

' ) y(k)y(k - 2) = E[y(k)y(k - 1)] - v(1) (9-8)

Thus, the LS identification of the (n,O) model is given by the last column of

V where
n

V = Toep [v(O),v(1),...,v(n)]n

"v(O) v(1) ... v(n)"

v(1) v(O) N
• \ \ x(9-9)

Iv(n) N,

It follows from the Toeplitz structure of V that the relation in Result 9-1
n

can be written as
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[n An+1 n1
^n+ a -n Ja-- n+! --

an+l -- (9-10)[22•n+l
an+I

where

i.e.,

n .1 11

Equation (9-10) is the basis fo. the celebrated lattice structure of stable
systems (see, e.g. , [9-21). Note that

"n 1 __[n+l + ^n+l ._ •n+})

an I [Ea + an+J- (9-11)
a(^n+l )21- (fan+I

n
The intimate relation between Vn, a , and stability theory has been

discussed in a number of articles [9-3, 9-4, 9-5] and is summarized in Theo-
rem 9-1.

Theorem 9-1

Statements (1) through (5) regarding the polynomial

n n-I
P = (n- z a z

1 i=19
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and the corresponding companion matrix

0

A I
are equivalent.

(1) P (z) = det[zl - A] has its roots inside the unit circle.n

(2) The Toeplitz matrix solution of the Ricatti equation

AV AT +f [0 ... 0 1] - V (9-12""

is positive definite.

(3) Mn, defined in Eq. (9-13) is positive definite

A aT T (9-13)
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(4) The Schur-Cohn matrix SCn, defined below, is positive definite

-1 12 ný - aI -

sc

L a n -l - a I I J L0J

[- a •an 0 [&n -a
-a 1 < a 0 an

(5) Let a , a ...,a be the LS parameter vectors of the first toth-
the n * order AR models obtained from the stationary data {y(i)).

then I a 1 < 1, i

(6 e n n-i 1
(6) Let a , a ,...,a be a set of vectors obtained using Eq. (9-10)

and (9-11) repeatedly. Then, lati < 1, i ,...

Theorem 9-1 shall serve in assessing the effect of order reduction on
the stability of a feedback design.

Note in particular that if P (z) is stable, V of Statement 2 and M-I of
n n n

Statement 3 are identical to the covariance matrix of the (n,0) ARIMA model
excited by unit variance white noise. The main benefits in the stability
statements of the theorem above are that they tie stability to model reduction
and LS estimation and that explicit expressions (the matrices Mn or Vn) to be

used in stability analysis are given in terms of the mLdel parameters (as op-
posed to the implicit Lyapunov conditions). These features will be exploited
in the following analysis.

9.3 Second-Order System

In this section, we shall consider the effect of designing a stable
feedback for a second-order plant when the designer assumes a model of order
one. This simple case will give some insight into the more general case to be
addressei in Section 9.4.

Consider the stable (2,1) system

y(k) = aY(k - 1) + a2y(k - 2) + u(k) (9-14)
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modeled by the first-order model (obtained through LS identification)

1

y(k) = ay(k - 1) + u(k) (9-15)

By the previous discussion

2
a Ia

a , a 2
I -a 2

and aall < 1, 1a 2 < 1 by assumption, Consider the feedback
2I

u(k) = -paIy(k - 1)

A stable design restricts p to satisfy

I11PI 4 (9-16)

However, to guarantee closed-loop stability of the plant, we must satisfy

2 1a - Pal
a 22I -a 2

or equivalently

22 I-a 2

a (9-17)

The constraints, Eq. (9-16) and (9-17), are plotted in Figure 9-2.
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P I
-+1 __ (C.2)

la 1

Figure 9-2.

It follows that for a2 < 0, any control law that satisfies Eq. (9-16) is
2 2

stable when applied to the full-order plant. if a 2 > 0, there exist no p *,0

for which stabitity can be guaranteed. Note that if X P 2 are t.he plant

eigenvalues, a2 X-A. Thus, a 2 > 0 only if X < 0, which is possible

only if both eigenvalues are real and sign (X ) = -sign( ). The failure to

guarantee stability using a reduced order model of such a system is not sur-

prising. We note that the result above is also applicable in the case of a

second-order system with one unstable mode, say X, and where a 1  This

discussion is summarized in Lemma 9-1.

Lemma 9-1

Let Eq. (9-14) be the system equation and Eq. (9-15) be a model obtained

from Eq. (9-14) by LS definition. Then, the feedback u(k) = 8y(k - 1), satis-
I 1 a2

fying + <1, is stable if <0

Conversely, there always exists a2 > 0 such that this feedback is
2

unstable.
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Note in particular that for -1 > a2 < 0 and tall < 1, 0 < p < 2 guaran-

tees stability, and that Ia(1 0- p)J < Jall in this case. We shall refer to

such a control law as stability enhancing control (see Definition 9-2 in Sec-
tion 9.4).

It is reasonable to assume that the analysis of the residual energy wiii

provide tighter bounds on Ia21 thus allowing for a more judicial choice of p

to acconmmodate a2 > 0. in particular, note that for 0 < p < I, stability is

guaranteed if -1 < a 2 <
1 + la l

th
9.4 n Order Systems

In this section, the results of the previous section are generalized.
To enable this generalization, a few definitions and ztlations rust first be
presented.

Definition 9-1:

S 0

1 (9-18)

0

S is called the shift operator since

S=

Notation

The vector of coefficients in the polynomial P (z) of Theorem 9-1 %ill

be denoted by an, i.e.,

124



T
T Ll,-al,... -a n (9-19)

It follows that the matrices A1 and A2 defined in Eq. (9-13) satisfy

A1 = n S*-n an-] (9-20)

A2  = S[Jpa SJn ... Snj_,n] (9-21)

or equivalently, from Eq. (9-13)

n 1(i T + ij l )
M [(Rsla)(sia )T - )(Sija (9-22)

n --- n-- --n

By Theorem 9-1, P(z) is stable if and only if M > 0, i.e.

T Ms Ti n2 x +I Ja )2

TM x = Z [LT_ Tsi ]~
- n-- i=O -)

> 0 xcRn+1 (9-23)

Let a be related toha via Eq. (9-10) and (9-11), and define

Ci +2 n~+1

Then w- obtain

(an-122 =+
xMn1  an+i) -?.

+ -a nl Mn [an (9-24)
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Thus, M > 0 if Mn > 0 and Ia11 < 1 as in Theorem 9-1. Finally, the fol-

lowing concept is needed for the generalization of Section 9.3.

Let Vn = Toep[v0...,Vn+l I be the solution of Eq. (9-12) corresponding

to a . Consider the stable feedback law
--n

u~k) = T [y(k -1]

u(k) -- [ n (9-25)

and define

and correspondingly, define Vn' Pn(z)W etc.

Definition 9--2: 8 is said to be a stability enhancing control law if V < V

or equivalently Mn > M n.

Using the concept in Definition 9-2, the main result of this study is
obtained.

Theorem 9-2

Let a n+ and an be related via Eq. (9-1U) and (9-11). Let B-n be a sta-

bility enhancing control, designed for the system a n. Then the control law,

Eq. (9-25), is stable when applied to the system a • if it satisfies * x&R

xM. xx 2 1  r(iR~

n
( 11( +I 2) T n+l ilj (• T[ *1n+1 -"÷) xTM x + 2a x S ai

T i-1, T i+1
A LS a) AxS Jan)]

T [(I- (a n+l, + _ Rn] > 0 (9-26)
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Remarks

(1) a Ln Eq. (9-26) can be replaced by
n

(2) The matrix R is, in general, nondefinite. However, the signn
definiteness o L- (anl )2]nl

t of - n+1) Mn + a n+lR as a function of the
n+I

value of an+l can be established for a given choice of stability

enhancing control.

(3) For n = 1, it is easily verified that Eq. (9-26) implies - < a2

< 0, which is consistent with Lemma 9-1.

(4) Note that l- (an+l + an+l R + M as an+l 0, which is con-
n+1 j ]M n+l n n n+l

sistent with reasoning.

(5) The proof of the theorem is obtained by using Eq. (9-10), (9-11),
and (9-12); the notion of stability enhancing control and using

the identities

xTs - ToI T i; Ts'L] T

9.5 Conclusions

The effect of order reduction on the stability of feedback design has
been addressed. The assumption made was that the reduction of order is based

on the results of system identification rather than on analytical reduction of

known full-order systems.

The stability analysis was based on the relation between LS estimation
and stability theory. Sufficient conditions for a "stability enhancing
controller" to be stable when applied to a full-order system have been
established.

This chapter presents only a first stab at understanding the effect of
model reduction induced by identification on stability. The generalization of

Theorem 9-2 to an arbitrary difference in orders between the model and the
plant yields similar conditions to that of Eq. (9-26). However, explicit

constraints on the ignored parameters are cluttered by the algebra. Further
studies are necessary to alleviate this algebraic problem.
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n+lIn the discussion, it was assumed that the ignored parameter a n+1 is ab-

solutely bounded by one. Actually, one should expect that, by choosing n suf-
n+1 n+l

ficiently large, tighter bounds on an+l can be found (e.g., by relating an+1

to the energy in the residual sequence). Such an analysis in the time domain
is analogous to the often used assunption of poor knowledge of the frequency
response of a plant in the high-frequency range (see e.g., [9-6]).

The results presented in this section are the first to give theoretical

justification to a common practice. auccess of simplified modeling has been
reported in various fields (e.g., power generation, which is very similar to
LSS in its characteristics [9-7]). it is our intention to demonstrate the
practicality of this approach on Draper Model #2 in the near future.
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